分析 (1)先求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間;
(2)問(wèn)題轉(zhuǎn)化為求函數(shù)h(x)=f(x)-g(x)=-12x2-mlnx+(m+1)x的零點(diǎn)個(gè)數(shù)問(wèn)題,通過(guò)求導(dǎo),得到函數(shù)h(x)的單調(diào)區(qū)間,求出h(x)的極小值,從而求出函數(shù)h(x)的零點(diǎn)個(gè)數(shù)即f(x)和g(x)的交點(diǎn)個(gè)數(shù).
解答 解:(1)f(x)的定義域是(0,+∞),m>0,
f′(x)=x2−mx,
令f′(x)>0,解得:x>√m,令f′(x)<0,解得:x<√m,
∴f(x)在(0,√m)遞減,在(√m,+∞)遞增;
(2)f(x)與g(x)圖象的交點(diǎn)個(gè)數(shù),
即函數(shù)h(x)=f(x)-g(x)=-12x2-mlnx+(m+1)x的零點(diǎn)個(gè)數(shù)問(wèn)題,
h′(x)=-(x−m)(x−1)x,
令h′(x)>0,解得:1<x<m,令h′(x)<0,解得:x>m或x<1,
∴h(x)在(0,1)遞減,在(1,m)遞增,在(m,+∞)遞減,
∴h(x)極小值=h(1)=m+12>0,
∴h(x)和x軸有1個(gè)交點(diǎn),
即函數(shù)f(x)與g(x)圖象的交點(diǎn)個(gè)數(shù)是1個(gè).
點(diǎn)評(píng) 本題考察了導(dǎo)數(shù)的應(yīng)用,考察函數(shù)的單調(diào)性問(wèn)題,考察轉(zhuǎn)化思想,函數(shù)的零點(diǎn)問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x-1 | B. | y=x12 | C. | y=x−13 | D. | y=x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com