17.到兩條平行線2x-y+2=0和2x-y+4=0的距離相等的直線方程為2x-y+3=0.

分析 根據(jù)題意,設(shè)要求直線的方程為:2x-y+c=0,由平行直線之間的距離公式可得$\frac{|c-2|}{\sqrt{{2}^{2}+(-1)^{2}}}$=$\frac{|c-4|}{\sqrt{{2}^{2}+(-1)^{2}}}$,解可得c的值,代入直線方程中即可得答案.

解答 解:根據(jù)題意,要求直線與兩條平行線2x-y+2=0和2x-y+4=0的都平行,
則設(shè)要求直線的方程為:2x-y+c=0,
由題意可得$\frac{|c-2|}{\sqrt{{2}^{2}+(-1)^{2}}}$=$\frac{|c-4|}{\sqrt{{2}^{2}+(-1)^{2}}}$,
解可得c=3,
即要求直線的方程為:2x-y+3=0,
故答案為:2x-y+3=0.

點(diǎn)評(píng) 本題考查待定系數(shù)法求直線的方程,涉及平行線之間的距離計(jì)算,注意相互平行直線的一般式方程的特點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)對于任意x,y∈R,總有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,f(1)=-$\frac{1}{4}$.
(Ⅰ)求證f(x)是奇函數(shù);
(Ⅱ)求證:f(x)在R上是減函數(shù);
(Ⅲ)求f(x)在[-4,4]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=sin(2x-$\frac{π}{6}$)的最小正周期是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的前n項(xiàng)和Sn=n2+2n+5,則a6+a7+a8=45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)是2x與$\frac{2a}{x}$的平均值(x≠0.且x,a∈R).
(1)當(dāng)a=1時(shí),求f(x)在[$\frac{1}{2}$,2]上的值域;
(2)若不等式f(2x)<-2x+$\frac{1}{{2}^{x}}$+1在[0,1]上恒成立,試求實(shí)數(shù)a的取值范圍;
(3)設(shè)g(x)=$\frac{\sqrt{1-{x}^{4}}}{1+{x}^{2}}$,是否存在正數(shù)a,使得對于區(qū)間[-$\frac{2}{\sqrt{5}}$,$\frac{2}{\sqrt{5}}$]上的任意三個(gè)實(shí)數(shù)m、n、p,都存在以f(g(m)、f(g(n))、f(g(p))為邊長的三角形?若存在,試求出這樣的a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知定義在R上的函數(shù)f(x)滿足任意x,y∈R恒有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0
(1)求證:f(x)是奇函數(shù).
(2)求證:f(x)在R上為減函數(shù).
(3)若f(-1)=2,求f(x)在[-2,4]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=log5x,則f(5)=1,f($\frac{1}{25}$)=-2.
若函數(shù)f(x)=lgx+2,則f(10)=3,f($\frac{1}{1000}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.40B.48C.$\frac{56}{3}$D.$\frac{112}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列各選項(xiàng)中敘述錯(cuò)誤的是( 。
A.命題“若x≠1,則x2-3x+2≠0”的否命題是“若x=1,則x2-3x+2=0”
B.命題“?x∈R,lg(x2+x+1)≥0”是假命題
C.已知a,b∈R,則“a>b”是“2a>2b-1”的充分不必要條件
D.命題“若x=2,則向量$\overrightarrow{a}$=(-x,1)與$\overrightarrow$=(-4,x)共線”的逆命題是真命題

查看答案和解析>>

同步練習(xí)冊答案