2.設(shè)全集U=R,M={x|x<2},N={x|x≤a},若∁UM?∁UN,則a的取值范圍是(-∞,2].

分析 求出集合的補(bǔ)集,利用補(bǔ)集關(guān)系,求解a的范圍即可.

解答 解:全集U=R,M={x|x<2},N={x|x≤a},
UM={x|x≥2};
UN={x|x>a},
UM?∁UN,
可得:a≤2.
故答案為:(-∞,2].

點(diǎn)評 本題考查集合交、并、補(bǔ)的運(yùn)算,基本知識(shí)的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$\overrightarrow{a}$=(-1,1),$\overrightarrow$=(sinωx,sin(ωx+$\frac{2}{3}$π)),ω>0,f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)當(dāng)ω=2時(shí),求f(x)的周期和單調(diào)遞增區(qū)間;
(2)若f(x)在區(qū)域[0,2π]上恰有一個(gè)最大值和一個(gè)最小值,求ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(4sin2θ-3sinθ,1),$\overrightarrow$=(1,-λ),若$\overrightarrow{a}$⊥$\overrightarrow$,則λ的取值范圍是$[-\frac{9}{16},7]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已經(jīng)平行四邊形ABCD中,AB=4,E為AB的中點(diǎn),且△ADE是等邊三角形,沿DE把△ADE折起至A1DE的位置,使得A1C=4.(1)F是線段A1C的中點(diǎn),求證:BF∥平面A1DE;
(2)求證:A1D⊥CE;
(3)求點(diǎn)A1到平面BCDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.計(jì)算:(x+1)(x-1)(x2-x+1)(x2+x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)的定義域?yàn)镈,區(qū)間I⊆D,若存在常數(shù)L,使得對任意x1,x2∈I,都有|f(x1)-f(x2)|≤L|x1-x2|,則稱函數(shù)f(x)在區(qū)間I上滿足李普希茲(Lipschitz)條件,已知f(x)=x2ex在區(qū)間(-∞,1]上滿足李普希茲條件,則L的最小值是( 。
A.3eB.2eC.eD.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,正方體ABCD-A1B1C1D1的棱長為1,G,H分別為DA1,CA1中點(diǎn)
(1)求證:GH∥平面CDD1C1
(2)求證:BC1⊥平面A1CD
(3)求三棱錐A-BCG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知橢圓C:x2+2y2=4
(1)求橢圓C的離心率;
(2)設(shè)O為原點(diǎn),若點(diǎn)A在直線y=2上,點(diǎn)B在橢圓C上,且OA⊥OB求線段AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在等比數(shù)列{an}中,a2=2,a5=16,則a6=32.

查看答案和解析>>

同步練習(xí)冊答案