分析 (Ⅰ)設點P(m,n),利用$m=\frac{-10+(-2)}{2}=-6$,以及橢圓方程求出m,n,然后求出半徑,即可求解圓的方程.
(Ⅱ)由題意求出N的坐標,設A(x,y),表示出$\overrightarrow{AM}•\overrightarrow{AN}$,求出最小值時點A的坐標.
( III)設直線l:y=k(x-10),利用直線與圓相交,圓心P到直線l的距離小于半徑,列出不等式求解即可.
解答 解:(Ⅰ)橢圓E的方程:$\frac{x^2}{100}+\frac{y^2}{25}=1$,得M(-10,0),C(-2,0)…(1分)
設點P(m,n),則有$m=\frac{-10+(-2)}{2}=-6$,
又:$\frac{m^2}{100}+\frac{n^2}{25}=1$,∴n=-4,即P(-6,-4),…(2分)
所以$r=PM=4\sqrt{2}$---------------------------------------------------(3分)
所以圓P的標準方程為(x+6)2+(y+4)2=32----------------------------(4分)
(Ⅱ)∵P為MN的中點,可得N(-2,-8)
設A(x,y),∴$\overrightarrow{AM}=({-10-x,-y}),\overrightarrow{AN}=({-2-x,-8-y})$,∴$\overrightarrow{AM}•\overrightarrow{AN}=({-10-x})({-2-x})+({-y})({-8-y})={x^2}+12x+20+{y^2}+8y$---------(9分)∴$\overrightarrow{AM}•\overrightarrow{AN}={({x+6})^2}+{({y+4})^2}-32≥-32$,
得x=-6,y=-4時,∴$\overrightarrow{AM}•\overrightarrow{AN}$最小---------------------------------(7分)
經(jīng)檢驗,點A在橢圓$\frac{x^2}{100}+\frac{y^2}{25}=1$上∴A(-6,-4)--------------------------(8分)
( III)設直線l:y=k(x-10),即直線與圓相交------------------------------(9分)
所以圓心P到直線l的距離$d=\frac{{|{-6k+4-10k}|}}{{\sqrt{1+{k^2}}}}<4\sqrt{2}$--------------------------(10分)
得$\frac{{|{1-4k}|}}{{\sqrt{1+{k^2}}}}<\sqrt{2}$
得$\frac{{4-\sqrt{30}}}{14}<k<\frac{{4+\sqrt{30}}}{14}$--------------------------(12分)
點評 本題考查直線與橢圓的標準方程的綜合應用,圓的方程的綜合應用,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 48 | B. | 24 | C. | 12 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $-\frac{3}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com