17.已知拋物線y2=4x,A、B分別是拋物線上位于x軸上、下兩側(cè)的點(diǎn),且A、B在拋物線準(zhǔn)線上的射影點(diǎn)分別為C、D.$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{9}{4}$(其中O為坐標(biāo)原點(diǎn)),則$\overrightarrow{OC}$•$\overrightarrow{OD}$=-17.

分析 求得拋物線的焦點(diǎn)和準(zhǔn)線方程,設(shè)A($\frac{{m}^{2}}{4}$,m),B($\frac{{n}^{2}}{4}$,n),(m>0,n<0),運(yùn)用向量的數(shù)量積的坐標(biāo)表示,可得mn=-18,求得C,D的坐標(biāo),運(yùn)用向量數(shù)量積的坐標(biāo)表示即可得到所求值.

解答 解:拋物線y2=4x的焦點(diǎn)為(1,0),準(zhǔn)線為x=-1,
設(shè)A($\frac{{m}^{2}}{4}$,m),B($\frac{{n}^{2}}{4}$,n),(m>0,n<0),
由$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{9}{4}$,可得$\frac{(mn)^{2}}{16}$+mn=$\frac{9}{4}$,
解得mn=-18,
由題意可得C(-1,m),D(-1,n),
即有$\overrightarrow{OC}$•$\overrightarrow{OD}$=1+mn=1-18=-17.
故答案為:-17.

點(diǎn)評(píng) 本題考查向量的數(shù)量積的坐標(biāo)表示,考查拋物線的方程和準(zhǔn)線方程的運(yùn)用,注意運(yùn)用設(shè)而不求法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知{an}為等差數(shù)列,a3=8,a9=20,求a13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求過點(diǎn)(3,-2),且垂直于直線3x-y+5=0的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.等比數(shù)列{an}的前n項(xiàng)和為Sn,若S2=7,S6=91,則S4=28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列函數(shù)中,既在區(qū)間($\frac{3π}{2}$,2π)上是減函數(shù),又是以π為周期的奇函數(shù)為( 。
A.y=$\frac{1}{2}$sin4xB.y=sin2x-cos2xC.y=tan($\frac{π}{2}$-x)D.y=cos(2x+$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)y=f(x)cosx的圖象向左平移$\frac{π}{4}$個(gè)單位后,得到函數(shù)y=2cos2x-1的圖象,則f(x)=( 。
A.2sinxB.2cosxC.-2sinxD.-2cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一個(gè)周期的圖象,如圖所示,則f(x)的解析式為( 。
A.2sin($\frac{x}{4}$-$\frac{π}{4}$)B.2sin($\frac{x}{4}$+$\frac{π}{4}$)C.2sin($\frac{πx}{4}$-$\frac{π}{4}$)D.2sin($\frac{πx}{4}$+$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某幾何體的三視圖如圖所示,則此幾何體的體積等于( 。
A.45B.36C.30D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.“輾轉(zhuǎn)相除法”的算法思路如右圖所示.記R(a\b)為a除以b所得的余數(shù)(a,b∈N*),執(zhí)行程序框圖,若輸入a,b分別為243,45,則輸出b的值為( 。
A.0B.1C.9D.18

查看答案和解析>>

同步練習(xí)冊(cè)答案