18.如果函數(shù)f(x)對(duì)任意a,b滿(mǎn)足f(a+b)=f(a)•f(b),且f(1)=2,則$\frac{f(2)}{f(1)}+\frac{f(4)}{f(3)}+\frac{f(6)}{f(5)}+…+\frac{f(2016)}{f(2015)}$=( 。
A.1006B.2010C.2016D.4032

分析 令b=1,得f(a+1)=f(a)•f(1)=2f(a),得$\frac{f(a+1)}{f(a)}$=2,由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)滿(mǎn)足:對(duì)任意實(shí)數(shù)a,b都有f(a+b)=f(a)f(b),且f(1)=2,
∴$\frac{f(2)}{f(1)}+\frac{f(4)}{f(3)}+\frac{f(6)}{f(5)}+…+\frac{f(2016)}{f(2015)}$=2+2+…+2=2
=2×1008=2016.
故選:C.

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,根據(jù)條件尋找規(guī)律是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)f(x)=ex-e-x,g(x)=ex+e-x
(1)分別判斷f(x),g(x)的奇偶性,并說(shuō)明理由;
(2)求[f(x)]2-[g(x)]2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.平面幾何中,若△ABC的內(nèi)切圓半徑為r,其三邊長(zhǎng)分別為a,b,c,則△ABC的面積$S=\frac{1}{2}(a+b+c)•r$.類(lèi)比上述命題,若三棱錐的內(nèi)切球半徑為R,其四個(gè)面的面積分別為S1,S2,S3,S4,猜想三棱錐體積V的一個(gè)公式.若三棱錐P-ABC的體積V=$\frac{{2\sqrt{2}}}{3}$,其四個(gè)面的面積均為$\sqrt{3}$,根據(jù)所猜想的公式計(jì)算該三棱錐P-ABC的內(nèi)切球半徑R為( 。
A.$\frac{{\sqrt{6}}}{6}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{6}}}{12}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x3+ax.
(Ⅰ)若f(x)在x=1處的切線平行于x軸,求a的值和f(x)的極值;
(Ⅱ)若過(guò)點(diǎn)A(1,0)可作曲線y=f(x)的三條切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.給出下列命題:
①存在實(shí)數(shù)x,使得sinx+cosx=$\frac{3}{2}$;
②函數(shù)y=2sin(2x+$\frac{π}{3}$)的圖象關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱(chēng);
③若函數(shù)f(x)=ksinx+cosx的圖象關(guān)于點(diǎn)($\frac{π}{4}$,0)對(duì)稱(chēng),則k=-1;
④在平行四邊形ABCD中,若|$\overrightarrow{BC}$+$\overrightarrow{BA}$|=|$\overrightarrow{BC}$+$\overrightarrow{AB}$|,則四邊形ABCD的形狀一定是矩形.
則其中正確的序號(hào)是③④(將正確的判斷的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.冪函數(shù)的圖象過(guò)點(diǎn)$(2,\sqrt{2})$,則該冪函數(shù)的解析式為( 。
A.y=x-1B.$y={x^{\frac{1}{2}}}$C.y=x2D.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知拋物線C:y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P是l上一點(diǎn),Q是直線PF與C的一個(gè)交點(diǎn),若$\overrightarrow{PF}$=3$\overrightarrow{QF}$,則|QF|=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)區(qū)域Ω={(x,y)|0≤x≤2,0≤y≤2},區(qū)域A={(x,y)|xy≤1,(x,y)∈Ω},在區(qū)域Ω中隨機(jī)取一個(gè)點(diǎn),則該點(diǎn)在A中的概率( 。
A.$\frac{1+2ln2}{4}$B.$\frac{1+2ln2}{8}$C.$\frac{2ln2}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在正方體中,E,F(xiàn)是棱A′B′與D′C′的中點(diǎn),求面EBCF與面ABCD所成二面角的正切值.(取銳角)

查看答案和解析>>

同步練習(xí)冊(cè)答案