【題目】已知函數(shù)f(x),g(x)滿足關(guān)系g(x)=f(x)f(x+α),其中α是常數(shù).
(1)設(shè)f(x)=cosx+sinx,,求g(x)的解析式;
(2)設(shè)計(jì)一個(gè)函數(shù)f(x)及一個(gè)α的值,使得;
(3)當(dāng)f(x)=|sinx|+cosx,時(shí),存在x1,x2∈R,對任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.
【答案】(1) (2)f(x)=2cosx,α=- (3)
【解析】
(1)求出f(x+α),代入g(x)=f(x)f(x+α)化簡得出.
(2)對g(x)化簡得=4cosxcos(x-),故f(x)=2cosx,α=-.
(3)求出g(x)的解析式,由題意得g(x1)為最小值,g(x2)為最大值,求出x1,x2,從而得到|x1-x2|的最小值.
(1)∵f(x)=cosx+sinx,∴f(x+α)=cos(x+)+sin(x+)=cosx-sinx;
∴g(x)=(cosx+sinx)(cosx-sinx)=cos2x-sin2x=cos2x.
(2)∵=4cosxcos(x-),
∴f(x)=2cosx,α=-.
(3)∵f(x)=|sinx|+cosx,∴g(x)=f(x)f(x+α)=(|sinx|+cosx)(|cosx|-sinx)
=,
因?yàn)榇嬖?/span>x1,x2∈R,對任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,
所以當(dāng)x1=2kπ+π或時(shí),g(x)≥g(x1)=-1
當(dāng)時(shí),g(x)≤g(x2)=2
所以
或
所以|
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,側(cè)面BB1C1C⊥底面ABC.
(1)若D是BC的中點(diǎn),求證:AD⊥CC1;
(2)過側(cè)面BB1C1C的對角線BC1的平面交側(cè)棱于M,若AM=MA1,求證:截面MBC1⊥側(cè)面BB1C1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的右焦點(diǎn)為,不垂直軸且不過點(diǎn)的直線與橢圓相交于兩點(diǎn).
(1)若直線經(jīng)過點(diǎn),則直線、的斜率之和是否為定值?若是,求出該定值;若不是,請說明理由;
(2)如果,原點(diǎn)到直線的距離為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間上的最大值和最小值及相應(yīng)的x值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的性質(zhì)通常指函數(shù)的定義域、值域、周期性、單調(diào)性、奇偶性、對稱性等,請選擇適當(dāng)?shù)奶骄宽樞,研究函?shù)的性質(zhì),并在此基礎(chǔ)上填寫下表,作出f(x)在區(qū)間[-π,2π]上的圖象.
性質(zhì) | 理由 | 結(jié)論 | 得分 |
定義域 | |||
值域 | |||
奇偶性 | |||
周期性 | |||
單調(diào)性 | |||
對稱性 | |||
作圖 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且在區(qū)間(﹣∞,0)是單調(diào)遞增的,若S1= x2dx,S2= dx,S3= exdx,則f(S1),f(S2),f(S3)的大小關(guān)系是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在長為10千米的河流的一側(cè)有一條觀光帶,觀光帶的前一部分為曲線段,設(shè)曲線段為函數(shù)(單位:千米)的圖象,且圖象的最高點(diǎn)為;觀光帶的后一部分為線段.
(1)求函數(shù)為曲線段的函數(shù)的解析式;
(2)若計(jì)劃在河流和觀光帶之間新建一個(gè)如圖所示的矩形綠化帶,綠化帶僅由線段構(gòu)成,其中點(diǎn)在線段上.當(dāng)長為多少時(shí),綠化帶的總長度最長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1 , F2分別是C: (a>b>0)的左,右焦點(diǎn),M是C上一點(diǎn)且MF2與x軸垂直,直線MF1與C的另一個(gè)交點(diǎn)為N.
(1)若直線MN的斜率為 ,求C的離心率;
(2)若直線MN在y軸上的截距為2,且|MN|=5|F1N|,求a,b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二項(xiàng)式 的展開式.
(1)求展開式中含項(xiàng)的系數(shù);
(2)如果第項(xiàng)和第項(xiàng)的二項(xiàng)式系數(shù)相等,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com