10.在△ABC中,若3cos(A-B)+5cosC=0,則tanC的最大值為(  )
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.-$\frac{\sqrt{2}}{4}$D.-2$\sqrt{2}$

分析 由題意可得3cos(A-B)-5cos(A+B)=0,展開(kāi)化簡(jiǎn)可得tanAtanB=$\frac{1}{4}$,再利用基本不等式求得tan(A+B)≥$\frac{4}{3}$,從而求得tanC的最大值.

解答 解:△ABC中,若3cos(A-B)+5cosC=0,即3cos(A-B)+5cos(π-A-B)=3cos(A-B)-5cos(A+B)=0,
即 3cosAcosB+3sinAsinB-5cosAcosB+5sinAsinB=0,
故8sinAsinB=2cosAcosB,tanAtanB=$\frac{1}{4}$,
tanA+tanB≥2$\sqrt{tanAtanB}$=1,∴tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$≥$\frac{1}{\frac{3}{4}}$=$\frac{4}{3}$,
則tanC=-tan(A+B)≤-$\frac{4}{3}$,當(dāng)且僅當(dāng)tanA=tanB時(shí),等號(hào)成立,
故選:B.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、兩角和的正切公式,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{2x+a}{x+1}$在區(qū)間(0,1)單調(diào)增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,(x≤0)}\\{|lo{g}_{2}x|,(x>0)}\end{array}\right.$,則函數(shù)y=f[f(x)]-1的零點(diǎn)個(gè)數(shù)是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,在四面體ABCD中,已知$\overrightarrow{AB}$=$\overrightarrow b$,$\overrightarrow{AD}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow c$,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{EC}$,則$\overrightarrow{DE}$等于$\frac{1}{3}\overrightarrow{c}$-$\overrightarrow{a}$+$\frac{2}{3}\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)函數(shù)f(x)=|ex-e2a|,若f(x)在區(qū)間(-1,3-a)內(nèi)的圖象上存在兩點(diǎn),在這兩點(diǎn)處的切線相互垂直,則實(shí)數(shù)a的取值范圍是(-$\frac{1}{2}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.為迎接2016年到來(lái),某手工作坊的師傅要制作一種“新年禮品”,制作此禮品的次品率P與日產(chǎn)量x(件)滿足P=$\left\{\begin{array}{l}{\frac{1}{20-x}}&{(0<x≤c)}\\{\frac{4}{5}}&{(x>c)}\end{array}\right.$(c為常數(shù),且c∈N*,c<20),且每制作一件正品盈利4元,每出現(xiàn)一件次品虧損1元.
(Ⅰ)將日盈利額y(元)表示為日產(chǎn)量x(件)的函數(shù);
(Ⅱ)為使日盈利額最大,日制作量應(yīng)為多少件?(注:次品率=$\frac{次品數(shù)}{產(chǎn)品總數(shù)}$×100%)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$的左、右焦點(diǎn)分別為F1、F2,過(guò)點(diǎn)F1作傾斜角為$\frac{π}{3}$的直線交橢圓于A、B兩點(diǎn),求:
(1)弦AB的長(zhǎng)
(2)△F2AB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)f(x)=x2lnx,g(x)=ax3-x2
(1)求函數(shù)f(x)的最小值;
(2)若存在x∈(0,+∞),使f(x)>g(x),求實(shí)數(shù)a的取值范圍;
(3)若使方程f(x)-g(x)=0在x∈[e${\;}^{-\frac{1}{3}}$,en](其中e=2.7…為自然對(duì)數(shù)的底數(shù))上有解的最小a的值為an,數(shù)列{an}的前n項(xiàng)和為Sn,求證:Sn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+2,x≤0\\ lnx,x>0\end{array}\right.$,若函數(shù)y=|f(x)|-m的零點(diǎn)個(gè)數(shù)是4個(gè),則實(shí)數(shù)m的取值范圍是( 。
A.(0,2)B.(0,2]C.[0,2]D.(0,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案