7.設奇函數(shù)f(x)在(0,+∞)上為減函數(shù),且f(2)=0,則不等式$\frac{f(x)+2f(-x)}{x}$<0的解集為( 。
A.(-∞,-2)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-2,0)∪(0,2)D.(-2,0)∪(2,+∞)

分析 根據(jù)函數(shù)奇偶性和單調性之間的關系即可得到結論.

解答 解:∵奇函數(shù)f(x)在(0,+∞)上為減函數(shù),且f(2)=0,
∴函數(shù)f(x)在(-∞,0)上為減函數(shù),且f(-2)=f(2)=0,
作出函數(shù)f(x)的草圖如圖:
∵f(x)是奇函數(shù),∴不等式等價為$\frac{f(x)-2f(x)}{x}=\frac{-f(x)}{x}<0$,即$\frac{f(x)}{x}$>0,
即$\left\{\begin{array}{l}{x>0}\\{f(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)<0}\end{array}\right.$,
則0<x<2或-2<x<0,
故不等式$\frac{{f(x)-f({-x})}}{x}$>0的解集是(-2,0)∪(0,2),
故選:C.

點評 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性和單調性之間的關系,利用數(shù)形結合是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=ax2-2ax+3-b(a≠0)在[1,3]有最大值5和最小值2,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上不同于A,B的任意一點.
(1)求證:平面PAC⊥平面PBC;
(2)若PA=4,AB=6,∠ABC=30°.
①求AC與PB所成角的正切值;
②求直線AC與平面PCB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若圖中,PA切⊙O于點A,PCB交⊙O于C、B兩點,且PCB過點O,AE⊥BP交⊙O于E,則圖中與∠CAP相等的角的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.給出下列命題:
①函數(shù)$f(x)=4cos(2x+\frac{π}{3})$的一個對稱中心為$(-\frac{5}{12}π,0)$
②已知:f(x)=min{sinx,cosx},則f(x)的值域為$[-1,\frac{{\sqrt{2}}}{2}]$
③若α,β均為第一象限角,且α>β,則sinα>sinβ
④若${(\frac{1}{2})^a}={(\frac{1}{3})^b}$,則a>b>0
⑤定義域為R的函數(shù)y=f(x)滿足f(-x)+f(x+2)=2,則其圖象關于點(1,1)對稱
其中正確命題的序號是①②⑤(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(1)若函數(shù)f(x)有極值,求a的取值范圍;
(2)若關于x的不等式f(x)≤ax-1恒成立,求整數(shù)a的最小值;
(3)是否存在x0>0,使得|f(x)+$\frac{1}{2}{ax}^{2}$-f(x0)|<x對任意x>0成立?若存在,求出x0的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=log3x,x∈[3,27],g(x)=f2(x)-2m•f(x)+3的最小值為h(m).
(1)求h(m);
(2)是否存在實數(shù)a,b,同時滿足下列條件:
①b<a<1
②當h(m)的定義域為[b,a]時,值域為[b2,a2],若存在,求出a和b的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)y=loga(1-ax)在區(qū)間[1,2]單調增,則a的取值范圍是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知一個正四面體紙盒的棱長為$2\sqrt{6}$,若在該正四面體紙盒內放一個正方體,使正方體可以在紙盒內任意轉動,則正方體棱長的最大值為( 。
A.1B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步練習冊答案