3.已知i為虛數(shù)單位,$\overline{z}$是z的共軛復(fù)數(shù),若($\overline{z}$+i)(1-i)=1+3i,則|z|=( 。
A.2B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

分析 由已知等式變形,得到$\overline{z}$,然后代入復(fù)數(shù)模的計算公式得答案.

解答 解:由($\overline{z}$+i)(1-i)=1+3i,得$\overline{z}=\frac{1+3i}{1-i}+i=\frac{2i}{1-i}=\frac{{2i•({1+i})}}{{({1-i})({1+i})}}=-1+i$,
∴$|z|=|\overline{z}|=\sqrt{2}$.
故選:B.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=loga(x+2)-1(a>0且a≠1)的圖象恒過定點A.若直線mx+ny+2=0經(jīng)過點A,則m•n的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)z=kx+y,其中實數(shù)x,y滿足$\left\{{\begin{array}{l}{x+y≥2}\\{y≤\frac{1}{2}x+2}\\{y≥2x-4}\end{array}}\right.$,若z的最大值為12,則實數(shù)k的值是( 。
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.△ABC中,AB=3,AC=4,BC=5,M為AC的中點,則$\overrightarrow{AB}•\overrightarrow{BM}$=(  )
A.-16B.-9C.9D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知命題p:不等式ax2+ax+1>0的解集為全體實數(shù),則實數(shù)a∈(0,4);命題q:“x2-3x>0”是“x>4”的必要不充分條件,則下列命題正確的是( 。
A.p∧qB.p∧(?q)C.(?p)∧qD.(?p)∧(?q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={y|y=$\sqrt{{x^2}-3x+2}}$},B={x|x≤t2+2t-1,對于t∈R恒成立},則( 。
A.A⊆BB.B⊆AC.A∪B=RD.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合 M={x|x≥2},N={x∈N*|x2≤9},則 M∩N等于(  )
A.{3}B.{2,3}C.{x|2≤x≤3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的一條漸近線過點(2,3),則此雙曲線的離心率為(  )
A.2B.$\frac{5}{2}$C.$\frac{{\sqrt{10}}}{2}$D.$\frac{{\sqrt{13}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知x,y∈R,i是虛數(shù)單位,若2+xi與$\frac{3+yi}{1+i}$互為共軛復(fù)數(shù),則(x+yi)2=( 。
A.3iB.3+2iC.-2iD.2i

查看答案和解析>>

同步練習(xí)冊答案