18.下列各組中的函數(shù)圖象相同的是( 。
A.f(x)=1,g(x)=x0B.f(x)=1,g(x)=$\frac{x}{x}$
C.f(x)=$\frac{(x+3)^{2}}{x+3}$,g(x)=(x+3)(x+3)0D.f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,x>0}\\{-x,x<0}\end{array}\right.$

分析 相同函數(shù)的圖象相同,判斷函數(shù)的定義域與對(duì)應(yīng)法則是否相同,即可得到結(jié)果.

解答 解:f(x)=1,g(x)=x0,函數(shù)的定義域不相同,不是相同函數(shù);圖象不相同;
f(x)=1,g(x)=$\frac{x}{x}$,函數(shù)的定義域不相同,不是相同函數(shù);圖象不相同;
f(x)=$\frac{(x+3)^{2}}{x+3}$,g(x)=(x+3)(x+3)0,函數(shù)的定義域相同,對(duì)應(yīng)法則相同,是相同函數(shù).圖象相同;
f(x)=|x|,g(x)=$\left\{\begin{array}{l}x,x>0\\-x,x<0\end{array}\right.$函數(shù)的定義域相同,不是相同函數(shù);圖象不相同;
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)是否是相同函數(shù)的判斷,注意函數(shù)的定義域以及對(duì)應(yīng)法則是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知△ABC中,b2+c2>a2,且角A為三個(gè)內(nèi)角中的最大角,則角A的取值范圍是 ( 。
A.(120°,180°)B.(90°,120°)C.(60°,90°)D.(45°,60°)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知圓M與圓N:(x-$\frac{5}{3}$)2+(y+$\frac{5}{3}$)2=r2關(guān)于直線y=x對(duì)稱,且點(diǎn)D(-$\frac{1}{3}$,$\frac{5}{3}$)在圓M上
(1)判斷圓M與圓N的位置關(guān)系
(2)設(shè)P為圓M上任意一點(diǎn),A(-1,$\frac{5}{3}$).B(1,$\frac{5}{3}$),$\overrightarrow{PA}$與$\overrightarrow{PB}$不共線,PG為∠APB的平分線,且交AB于G,求證△PBG與△APG的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=$\frac{lnx}{x}$,則下列大小關(guān)系正確的是(  )
A.f(e)<f(3)<f(2)B.f(e)<f(2)<f(3)C.f(2)<f(3)<f(e)D.f(3)<f(2)<f(e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖所示,棱柱ABC-A1B1C1的側(cè)面BCC1B1是菱形,設(shè)D是A1C1上的點(diǎn)且A1B∥平面B1CD,則A1D:DC1的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=2sin(ωx+φ)其中x∈R,ω>0,-π<φ<π)的部分圖象如圖所示,則函數(shù)f(x)的解析式是$f(x)=2sin(2x+\frac{2π}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(x)的定義域?yàn)镈,若存在閉區(qū)間[a,b]⊆D,使得函數(shù)f(x)滿足:①f(x)在[a,b]內(nèi)是單調(diào)函數(shù);②f(x)在[a,b]上的值域?yàn)閇2a,2b],則稱區(qū)間[a,b]為y=f(x)的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有①②④
①f(x)=x2(x≥0);   
②f(x)=2x(x∈R);
③f(x)=$\frac{4x}{{{x^2}+1}}$(x≥0);
④$f(x)={log_a}({a^x}-\frac{1}{8})(a>0,a≠1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知α=20°,則tanα+4sinα的值為( 。
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若奇函數(shù)f(x)在[1,3]上有最小值2,則它在[-3,-1]上的最大值是-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案