11.已知命題p:實數(shù)x滿足|x-a|<2,命題q:實數(shù)x滿足$\frac{2x-1}{x+2}<1$.
(1)若命題q為真,求x的取值范圍;
(2)若p是q的充分不必要條件,求實數(shù)a的取值范圍.

分析 (1)通過解不等式求出x的范圍即可;(2)分別求出關(guān)于p,q的x的范圍,得到關(guān)于a的不等式組,解出即可.

解答 解:(1)解不等式$\frac{2x-1}{x+2}<1$,得:-2<x<3;
∴命題q為真時:-2<x<3;
(2)解不等式|x-a|<2,得p:-2+a<x<2+a,
若p是q的充分不必要條件,
則$\left\{\begin{array}{l}{-2+a>-2}\\{2+a<3}\end{array}\right.$,解得:0<a<1.

點評 本題考查了充分必要條件,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.1和9的等比中項是( 。
A.5B.3C.-3D.±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,圓O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交圓O于N,過N 點的切線交C A 的延長線于P
(1)求證:PM2=PA.PC
(2)若MN=2,OA=$\sqrt{3}$OM,求劣弧$\widehat{BN}$的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖北襄陽四中高三七月周考三數(shù)學(xué)(文)試卷(解析版) 題型:解答題

選修4-1:幾何證明選講

如圖所示,在中,的角平分線,的外接圓交點.

(1)證明:;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某年青教師近五年內(nèi)所帶班級的數(shù)學(xué)平均成績統(tǒng)計數(shù)據(jù)如表:
年份x年20092010201120122013
平均成績y分9798103108109
(1)利用所給數(shù)據(jù),求出平均分與年份之間的回歸直線方程$\hat y=bx+a$
(2)利用(1)中所求出的直線方程預(yù)測該教師2015年所帶班級的數(shù)學(xué)平均成績.
參考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知四面體ABCD的各面均是邊長為1的正三角形,設(shè)E,G分別為△BCD,△ABC的中心,分別以$\overrightarrow{AB}$,$\overrightarrow{GC}$,$\overrightarrow{GD}$方向上的單位向量構(gòu)成一個基底$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$,則向量$\overrightarrow{AE}$的坐標(biāo)是($\frac{2}{3}$,$\frac{2\sqrt{3}}{9}$,$\frac{\sqrt{6}}{9}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.過點(0,2a)且垂直y軸的直線與y=|ax-1|有兩個交點,求實數(shù)a的取值范圍$({0,\frac{1}{2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在銳角△ABC中,∠A=60°,BC=2,求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.3π+2$\sqrt{2}$-1B.3π+2$\sqrt{2}$C.2π+2$\sqrt{2}$-1D.2π+2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案