Processing math: 12%
15.已知命題p:f(x)=12+12x1為奇函數(shù);命題q:?x∈(0,\frac{π}{2}),sinx<x<tanx,則下面結(jié)論正確的是( �。�
A.p∧(¬q)是真命題B.(¬p)∨q是真命題C.p∧q是假命題D.p∨q是假命題

分析 對于命題p:函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞),關(guān)于原點(diǎn)對稱,計算f(x)+f(-x)即可判斷出奇偶性.命題q:如圖,設(shè)∠AOT=x,OA=1,則MP=sinx,OM=cosx,AT=tanx,由圖可知:S△AOP<S扇形OAP<S△OAT,即可得出結(jié)論.

解答 解:對于命題p:∵函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞),關(guān)于原點(diǎn)對稱,
且f(x)+f(-x)=\frac{1}{2}+\frac{1}{{2}^{x}-1}+\frac{1}{2}+\frac{1}{{2}^{-x}-1}=1+\frac{1}{{2}^{x}-1}-\frac{{2}^{x}}{{2}^{x}-1}=0,即f(-x)=-f(x).
∴f(x)為奇函數(shù),命題p正確.
命題q:如圖,設(shè)∠AOT=x,OA=1,則MP=sinx,OM=cosx,AT=tanx,
由圖可知:S△AOP<S扇形OAP<S△OAT,∴sinx<x<tanx,
故命題q正確.
由復(fù)合命題真假的判斷方法可知:(¬p)∨q是真命題.
故選:B.

點(diǎn)評 本題考查了函數(shù)的奇偶性、三角函數(shù)的單調(diào)性、簡易邏輯的判斷方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)雙曲線\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})的左右焦點(diǎn)是F1,F(xiàn)2雙曲線上存在點(diǎn)P使離心率e=\frac{{sin∠P{F_2}{F_1}}}{{sin∠P{F_1}{F_2}}},則離心率e的取值范圍是(1,\sqrt{2}+1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-2,0),B(2,0),動點(diǎn)C滿足條件:△ABC的周長為10,記動點(diǎn)C的軌跡為曲線M.
(1)求曲線M的方程;
(2)若直線l與曲線M相交于E、F兩點(diǎn),若以EF為直徑的圓過點(diǎn)D(3,0),求證:直線l恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=sin2x+cos2x的最小正周期為π,單調(diào)增區(qū)間為[{kπ-\frac{3π}{8},kπ+\frac{π}{8}}],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.把紅桃、黑桃、方塊、梅花四張紙牌隨機(jī)發(fā)給甲、乙、丙、丁四個人,每人分得一張,事件“甲分得梅花”與事件“乙分得梅花”是互斥事件,但不是對立事件.
(填“對立”、“不可能”、“互斥事件”、“互斥事件,但不是對立”中的一個)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.曲線f(x)=xlnx+x在點(diǎn)x=2處的切線方程為(2+ln2)x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)已知f(\frac{2}{x}+1)=lgx,求f(x);
(2)定義在(-1,1)內(nèi)的函數(shù)f(x)滿足2f(x)-f(-x)=lg(x+1),求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖的莖葉圖記錄了甲、乙兩代表隊各10名同學(xué)在一次英語聽力比賽中的成績(單位:分),已知甲代表隊數(shù)據(jù)的中位數(shù)為76,乙代表隊數(shù)據(jù)的平均數(shù)是75.
(1)求x,y的值;
(2)判斷甲、乙兩隊誰的成績更穩(wěn)定,并說明理由(方差較小者穩(wěn)定).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平面直角坐標(biāo)系xOy 中,已知點(diǎn)A(2,-1)和坐標(biāo)滿足\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.的動點(diǎn)M(x,y),則目標(biāo)函數(shù)z=\overrightarrow{OA}•\overrightarrow{OM}的最大值為( �。�
A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊答案