12.已知函數(shù)f(x)=|3x-1|,當(dāng)a<b<c時(shí),有f(a)>f(c)>f(b),則下列各式中正確的是( 。
A.3a+3b<2B.3b+3c<2C.3a+3c<2D.3a+3c<1

分析 可以畫出函數(shù)f(x)的圖象,根據(jù)條件,通過圖象就能找到a,b,c的分布情況,能判斷這三個(gè)數(shù)在x=0的左面還是右面.從而找出正確的結(jié)論.

解答 解:函數(shù)f(x)=|3x-1|=$\left\{\begin{array}{l}-{3}^{x}+1,x<0\\{3}^{x}-1,x≥0\end{array}\right.$;
∴x<0時(shí),函數(shù)是減函數(shù);x≥0時(shí),是增函數(shù);

∵a<b<c,
∴若c≤0,則f(a)>f(b)>f(c),不合題意,
∴c>0;
若a≥0,則f(a)<f(b)<f(c),也不合題意,
∴a<0,而b可大于0,可小于0.
∴由f(a)>f(c)知,-3a+1>3c-1,
∴3a+3c<2.
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,能夠畫出函數(shù)f(x)的圖象,或能判斷函數(shù)f(x)的單調(diào)性,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知f(x)=$\left\{{\begin{array}{l}{{x^2}+3x+1,x≥0}\\{-{x^2}+x+2,x<0}\end{array}}\right.$,則不等式f(2x2-|x|)≤5的解集為[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知P(3cosα,3sinα,1)和Q(2cosβ,2sinβ,1),則|$\overrightarrow{PQ}$|的取值范圍是( 。
A.(1,25)B.[1,25]C.[1,5]D.(1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若P是等邊三角形ABC所在平面外一點(diǎn),且PA=PB=PC,D,E,F(xiàn)分別是AB,BC,CA的中點(diǎn),則下列結(jié)論中不正確的是(  )
A.BC∥平面PDFB.DF⊥平面PAEC.平面PAE⊥平面ABCD.平面PDF⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2ωx-cos2ωx-$\frac{1}{2}$(ω>0),其圖象與y=-1的相鄰兩個(gè)交點(diǎn)的距離為$\frac{π}{2}$,
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)A,B,C為△ABC的內(nèi)角,若f(A)=0,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.命題“?x∈R,x2≥0”的否定是(  )
A.?x0∈R,x${\;}_{0}^{2}$<0B.?x∈R,x${\;}_{0}^{2}$≤0C.?x∈R,x2<0D.?x∈R,x2≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)實(shí)數(shù)數(shù)列{an}(n∈N*)是等差數(shù)列,且a12+a22=1,則a22+a32的取值范圍是(  )
A.[1,2]B.[4-2$\sqrt{3}$,4+2$\sqrt{3}$]C.[1,5]D.[3-2$\sqrt{2}$,3+2$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)f(x)=$\frac{mx}{1+|x|}$,集合N={y|y=f(x),x∈[a,b]},若使得N=[a,b]的實(shí)數(shù)對(duì)(a,b)(a<b)恰好有3個(gè),則實(shí)數(shù)m的取值范圍是m>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某廠用鮮牛奶在某臺(tái)設(shè)備上生產(chǎn)A,B兩種奶制品.生產(chǎn)1噸A產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時(shí),獲利1000元;生產(chǎn)1噸B產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時(shí),獲利1200元.要求每天B產(chǎn)品的產(chǎn)量不超過A產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)A,B兩種產(chǎn)品時(shí)間之和不超過12小時(shí). 假定每天至多可獲取鮮牛奶15噸,問該廠每天生產(chǎn)A,B兩種奶制品各多少噸時(shí),該廠獲利最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案