13.焦點(diǎn)在y軸上,離心率為$\frac{\sqrt{6}}{3}$,一條準(zhǔn)線是y=3的橢圓標(biāo)準(zhǔn)方程是(  )
A.$\frac{{x}^{2}}{6}$$+\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{4}$+y2=1C.$\frac{{x}^{2}}{2}$$+\frac{{y}^{2}}{6}$=1D.x2$+\frac{{y}^{2}}{4}$=1

分析 設(shè)橢圓方程為$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0),運(yùn)用離心率公式和準(zhǔn)線方程,結(jié)合a,b,c的關(guān)系,解方程可得a,b,進(jìn)而得到橢圓方程.

解答 解:設(shè)橢圓方程為$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0),
由題意可得e=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$,$\frac{{a}^{2}}{c}$=3,
可得a=$\sqrt{6}$,c=2,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{2}$,
即有橢圓方程為$\frac{{y}^{2}}{6}$+$\frac{{x}^{2}}{2}$=1.
故選:C.

點(diǎn)評(píng) 本題考查橢圓的方程的求法,注意運(yùn)用離心率公式和準(zhǔn)線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}滿足a1=3,an=-an-1-2n+1,在a26,a27,a29,a29,a30中,最大的一項(xiàng)是(  )
A.a26B.a27C.a28D.a29
E.a30         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.等差數(shù)列{an}的通項(xiàng)公式是an=2n+1,其前n項(xiàng)和為Sn,求數(shù)列{$\frac{{S}_{n}}{n}$}的前10項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知某等比數(shù)列的前10項(xiàng)之和為10,前30項(xiàng)之和為70,則該數(shù)列前20項(xiàng)的和為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=3sin($\frac{x}{4}$+$\frac{π}{6}$)(x∈R)的最小正周期( 。
A.B.C.D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.求由拋物線f(x)=x2,直線x=1以及x軸所圍成的平面圖形的面積時(shí),若將區(qū)間[0,1]5等分,如圖所示,以小區(qū)間中點(diǎn)的縱坐標(biāo)為高,所有小矩形的面積之和為0.33.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.過雙曲線的右焦點(diǎn)F作實(shí)軸所在直線的垂線,交雙曲線于A,B兩點(diǎn),設(shè)雙曲線的左頂點(diǎn)M,若△MAB是直角三角形,則此雙曲線的離心率e的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow$=(1,sin2x),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求函數(shù)f(x)(x∈R)的單調(diào)增區(qū)間;
(2)若f(α-$\frac{π}{3}$)=2,α∈[$\frac{π}{2}$,π],求sin(2α+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知{an}為等差數(shù)列,若$\frac{{a}_{13}}{{a}_{12}}$<-1,且它的前n項(xiàng)和Sn有最大值,那么當(dāng)Sn取得最小正值時(shí),n的值為(  )
A.24B.23C.22D.11

查看答案和解析>>

同步練習(xí)冊(cè)答案