1.已知某等比數(shù)列的前10項(xiàng)之和為10,前30項(xiàng)之和為70,則該數(shù)列前20項(xiàng)的和為30.

分析 易知S10,S20-S10,S30-S20成等比數(shù)列,從而解得.

解答 解:記等比數(shù)列為{an},其前n項(xiàng)和為Sn,
故S10,S20-S10,S30-S20成等比數(shù)列,
即(S20-10)2=10(70-S20),
故S20=30,
故答案為:30.

點(diǎn)評(píng) 本題考查了等比數(shù)列的性質(zhì)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)y=3sin($\frac{π}{6}$-2x)-cos($\frac{π}{3}$+2x)(x∈R).
(1)求函數(shù)的周期;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.給出下列命題:①若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,則$\overrightarrow{AB}$與$\overrightarrow{CD}$共線;②若$\overrightarrow{AB}$=$\overrightarrow{CD}$,則$\overrightarrow{AB}$∥$\overrightarrow{BC}$;③若$\overrightarrow{AB}$=$\overrightarrow{CD}$,則$\overrightarrow{BA}$=$\overrightarrow{CD}$;④若$\overrightarrow{AB}$∥$\overrightarrow{BC}$,則A,B,C三點(diǎn)共線,其中正確的命題是①②(只填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,首末兩數(shù)之和為16,中間兩數(shù)之和為12,第二個(gè)數(shù)與第四個(gè)數(shù)之積等于第三個(gè)數(shù)的平方,求這四個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知數(shù)列{an}中,a1=1,a2=2,an=an-1-an-2(n∈N*,n≥3),則a2006=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.-$\frac{32}{81}$是不是等比數(shù)列3,-2,$\frac{4}{3}$,-$\frac{8}{9}$,…的項(xiàng)?如果是,是第幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.焦點(diǎn)在y軸上,離心率為$\frac{\sqrt{6}}{3}$,一條準(zhǔn)線是y=3的橢圓標(biāo)準(zhǔn)方程是( 。
A.$\frac{{x}^{2}}{6}$$+\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{4}$+y2=1C.$\frac{{x}^{2}}{2}$$+\frac{{y}^{2}}{6}$=1D.x2$+\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某醫(yī)院對(duì)治療支氣管肺炎的兩種方案A,B進(jìn)行比較研究,將志愿者分為兩組,分別采用方案A和方案B進(jìn)行治療,統(tǒng)計(jì)結(jié)果如下:
有效無(wú)效合計(jì)
使用方案A組96120
使用方案B組72
合計(jì)32
(Ⅰ)完成上述列聯(lián)表,并比較兩種治療方案有效的頻率;
(Ⅱ)能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為治療是否有效與方案選擇有關(guān)?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知AC⊥BC,AC=BC,D滿足$\overrightarrow{CD}$=t$\overrightarrow{CA}$+(1-t)$\overrightarrow{CB}$,若∠ACD=60°,則t的值為( 。
A.$\frac{\sqrt{3}-1}{2}$B.$\sqrt{3}$-$\sqrt{2}$C.$\sqrt{2}$-1D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案