12.曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{10}cosθ\\ y=sinθ\end{array}$(θ為參數(shù)),圓C2:x2+(y-6)2=2,設(shè)P,Q分別為曲線C1和圓C2上的點(diǎn),則P,Q兩點(diǎn)間的最大距離是(  )
A.5$\sqrt{2}$B.$\sqrt{46}$+$\sqrt{2}$C.7+$\sqrt{2}$D.6$\sqrt{2}$

分析 利用兩點(diǎn)間距離公式求出P到圓C2的圓心距離的最大值,轉(zhuǎn)化求解的距離即可.

解答 解:曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{10}cosθ\\ y=sinθ\end{array}$(θ為參數(shù)),圓C2:x2+(y-6)2=2,圓心(0,6),半徑為:$\sqrt{2}$,P,Q分別為曲線C1和圓C2上的點(diǎn),則P,Q兩點(diǎn)間的最大距離是P到圓心的距離與圓的半徑的和,
P到圓C2的圓心的距離:$\sqrt{{(\sqrt{10}cosθ)}^{2}+{(sinθ-6)}^{2}}$=$\sqrt{10{cos}^{2}θ+{sin}^{2}θ-12sinθ+36}$=$\sqrt{-9{sin}^{2}θ-12sinθ+46}$=$\sqrt{-(3sinθ-2)^{2}+50}$$≤5\sqrt{2}$.
則P,Q兩點(diǎn)間的最大距離是:6$\sqrt{2}$.
故選:D.

點(diǎn)評(píng) 本題考查曲線與方程的綜合應(yīng)用,參數(shù)方程的應(yīng)用,三角函數(shù)的化簡(jiǎn)求值,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=2sin(ωx+φ)(ω>0,一$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則( 。
A.函數(shù)f(x)的最小正周期是2π
B.函數(shù)f(x)的圖象可由函數(shù)g(x)=2sin2x的圖象向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度得到
C.函數(shù)f(x)的圖象關(guān)于直線x=一$\frac{π}{12}$對(duì)稱
D.函數(shù)f(x)在區(qū)間[-$\frac{7π}{12}$+kπ,-$\frac{π}{12}$+kπ](k∈Z)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)$f(x)=1+a•\frac{1}{2^x}+\frac{1}{4^x}$.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域;
(2)若對(duì)任意x∈[0,+∞),總有f(x)<3成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知“x>k”是“$\frac{3}{x+1}<1$”的充分不必要條件,則k的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=6-x-x2的單調(diào)遞減區(qū)間是( 。
A.$[-\frac{1}{2},+∞)$B.$[-\frac{1}{2},2)$C.$(-∞,-\frac{1}{2}]$D.(-3,$-\frac{1}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)=4x5+3x3+2x+1,則$f({log_2}3)+f({log_{\frac{1}{2}}}3)$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.過(guò)點(diǎn)P(-1,0)作曲線C:y=ex的切線,切點(diǎn)為T1,設(shè)T1在x軸上的投影是點(diǎn)H1,過(guò)點(diǎn)H1再作曲線C的切線,切點(diǎn)為T2,設(shè)T2在x軸上的投影是點(diǎn)H2,依次下去,得到第n+1(n∈N)個(gè)切點(diǎn)Tn+1,則點(diǎn)T2015的坐標(biāo)為(2014,e2014).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線$\frac{{x}^{2}}{3}$-y2=1的離心率互為倒數(shù),且直線x-y-2=0經(jīng)過(guò)橢圓的右頂點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)不過(guò)原點(diǎn)O的直線與橢圓C交于M、N兩點(diǎn),且直線OM、MN、ON的斜率依次成等比數(shù)列,求△OMN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.直線y=a分別與曲線y=2(x+1),y=x+lnx交于A、B,則|AB|的最小值為$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案