20.如圖給出的是計算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2015}$的值的一個程序框圖,則圖中執(zhí)行框中的①處和判斷框中的②處應(yīng)填的語句是(  )
A.n=n+1,i>1009B.n=n+2,i>1009C.n=n+1,i>1008D.n=n+2,i>1008

分析 要計算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2015}$的值需要用到直到型循環(huán)結(jié)構(gòu),按照程序執(zhí)行運算,即可得解.

解答 解:①的意圖為表示各項的分母,
而分母來看相差2,
∴n=n+2,
②的意圖是為直到型循環(huán)結(jié)構(gòu)構(gòu)造滿足跳出循環(huán)的條件,
而分母從1到2015共1008項,
∴i>1008,
故選:D.

點評 本題考查程序框圖應(yīng)用,重在解決實際問題,通過把實際問題分析,經(jīng)判斷寫出需要填入的內(nèi)容,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若關(guān)于x的不等式|x+3|+|x-1|>a恒成立,則a的取值范圍是(-∞,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合M={x|-4≤x<2},集合N={x|2x<$\frac{1}{4}$},則M∩N中所含整數(shù)的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某培訓(xùn)機構(gòu)對沈陽市兩所高中的學(xué)生是否愿意參加自主招生培訓(xùn)的情況進行問卷調(diào)查和考試測驗,從兩所學(xué)校共隨機抽取100位同學(xué)進行調(diào)查,統(tǒng)計結(jié)果如表:
自招
學(xué)校
愿意不愿意
A學(xué)校4610
B學(xué)校2420
(1)判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為是否愿意參加自主招生培訓(xùn)與學(xué)校有關(guān)?
(2)考試測驗中分客觀題和主觀題,客觀題共有8道,每道分值5分,學(xué)生李華答對每道客觀題的概率均為0.8.主觀題共有8道,每道分值12分,須隨機抽取5道主觀題作答,其中李華完全會答的有4道,不完全會的有4道,不完全會的每道主觀題得分S的概率滿足:P(S=3k)=$\frac{k}{6}$,k=1,2,3,假設(shè)解答各題之間沒有影響.
①對于一道不完全會的主觀題,李華得分的數(shù)學(xué)期望是多少?
②求李華在本次測驗中得分ξ的數(shù)學(xué)期望.
臨界值參考表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
參考公式:k=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知cos($\frac{5π}{12}$+α)=$\frac{1}{3}$,且-π<α<-$\frac{π}{2}$,則sin(2α+$\frac{5π}{6}}$)=( 。
A.$\frac{{4\sqrt{2}}}{9}$B.$\frac{2}{9}$C.$-\frac{2}{9}$D.$-\frac{{4\sqrt{2}}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若變量x,y滿足條件$\left\{\begin{array}{l}y≤x\\ x+y≤4\\ y≥k\end{array}\right.$,且z=2x+y的最小值為-6,則k=( 。
A.3B.-3C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若直線2mx-ny-2=0(m>0,n>0)過點(1,-2),則$\frac{1}{m}$+$\frac{9}{n}$的最小值為( 。
A.2B.6C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),且f(-1)=2,則f(2017)的值是( 。
A.2B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x、y滿足$\left\{\begin{array}{l}y≥1\\ x-y+1≥0\\ x+y-4≤0\end{array}\right.$,則z=|3x+y|的最大值為(  )
A.1B.6C.7D.10

查看答案和解析>>

同步練習(xí)冊答案