18.設(shè){an}是公比為q(q≠1),首項(xiàng)為a的等比數(shù)列,Sn是其前n項(xiàng)和,則點(diǎn)(Sn,Sn+1)( 。
A.一定在直線y=qx-a上B.一定在直線y=ax+q上
C.一定在直線y=ax-q上D.一定在直線y=qx+a上

分析 由于Sn+1-qSn=$\frac{a(1-{q}^{n+1})}{1-q}$-q$\frac{a(1-{q}^{n})}{1-q}$=a,即可得出.

解答 解:∵Sn+1-qSn=$\frac{a(1-{q}^{n+1})}{1-q}$-q$\frac{a(1-{q}^{n})}{1-q}$=a,
∴Sn+1=qSn+a,
∴點(diǎn)(Sn,Sn+1)一定在直線y=qx+a上.
故選:D.

點(diǎn)評(píng) 本題考查了等比數(shù)列的前n項(xiàng)和公式、直線的方程,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.直線l經(jīng)過(guò)原點(diǎn),且經(jīng)過(guò)兩條直線2x+3y+8=0,x-y-1=0的交點(diǎn),則直線l的方程為2x-y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知$α∈R,α≠\frac{π}{2}+kπ({k∈Z})$,設(shè)直線l:y=xtanα+m,其中m≠0,給出下列結(jié)論:
①直線l的方向向量與向量$\overrightarrow a=({cosα,sinα})$共線;
②若$0<α<\frac{π}{4}$,則直線l與直線y=x的夾角為$\frac{π}{4}-α$;
③直線l與直線xsinα-ycosα+n=0(n≠m)一定平行;
寫(xiě)出所有真命題的序號(hào)①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若曲線$\left\{\begin{array}{l}{x=2pt}\\{y=2p{t}^{2}}\end{array}\right.$,(t為參數(shù))上異于原點(diǎn)的不同兩點(diǎn)M1,M2所對(duì)應(yīng)的參數(shù)分別是t1、t2(且t1≠t2),則弦M1M2所在直線的斜率是( 。
A.t1+t2B.t1-t2C.$\frac{1}{{t}_{1+}{t}_{2}}$D.$\frac{1}{{t}_{1-}{t}_{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知集合A={x|x≤a},B={x|-2≤x<1},若A∪B=A,則實(shí)數(shù)a的取值范圍是a≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)l,m是不同的直線,α,β,γ是不同的平面,則下列命題正確的是②.
①若l⊥m,m⊥α,則l⊥α或 l∥α          
②若l⊥γ,α⊥γ,則l∥α或 l?α
③若l∥α,m∥α,則l∥m或 l與m相交    
④若l∥α,α⊥β,則l⊥β或 l?β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=2ax+$\frac{1}{x}$(a∈R).
(1)當(dāng)$a=\frac{1}{2}$時(shí),試判斷f(x)在(0,1]上的單調(diào)性并用定義證明你的結(jié)論;
(2)對(duì)于任意的x∈(0,1],使得f(x)≥6恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓x2+y2+8x-4y=0與圓x2+y2=20關(guān)于直線y=kx+b對(duì)稱,
(1)求k、b的值;
(2)若這時(shí)兩圓的交點(diǎn)為A、B,求∠AOB的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.一個(gè)圓經(jīng)過(guò)點(diǎn)A(0,2)與B(-2,1),且圓心在直線x-3y-10=0上,求此圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案