分析 數(shù)列{an}是等差數(shù)列,可得a1+a2n+1=a2+a2n.于是p=a2+a4+…+a2n=$\frac{n}{2n+1}×\frac{(2n+1)({a}_{1}+{a}_{2n+1})}{2}$,即可得出.
解答 解:∵數(shù)列{an}是等差數(shù)列,
∴a1+a2n+1=a2+a2n.
∵p=a2+a4+…+a2n=$\frac{n({a}_{2}+{a}_{2n})}{2}$=$\frac{n({a}_{1}+{a}_{2n+1})}{2}$=$\frac{n}{2n+1}×\frac{(2n+1)({a}_{1}+{a}_{2n+1})}{2}$=$\frac{n}{2n+1}{S}_{2n+1}$,
∴S2n+1=$\frac{(2n+1)p}{n}$.
故答案為:$\frac{(2n+1)p}{n}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)與前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 最小正周期為4 | B. | f(x)關(guān)于x=2對(duì)稱(chēng) | C. | f(x)不是周期函數(shù) | D. | ω=$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com