5.已知a=20.3,$b={(\frac{1}{2})^{-0.4}}$,c=2log52,則a,b,c的大小關系為( 。
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

分析 利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵1=20<a=20.3<$b={(\frac{1}{2})^{-0.4}}$=20.4,
c=2log52=log54<log55=1,
∴c<a<b.
故選:B.

點評 本題考查三個數(shù)的大小的比較,是基礎題,解題時要認真審題,注意指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.在平面直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=2+2sinα}\end{array}\right.$(α為參數(shù)),曲線C2的方程為x2+(y-4)2=16在與直角坐標系xOy有相同的長度單位,以原點為極點,以x軸正半軸為極軸建立極坐標系.
(Ⅰ)求曲線C1的極坐標方程;
(Ⅱ)若曲線θ=$\frac{π}{3}$(ρ>0)與曲線C1.C2交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知變量x與y的取值如下表:
x2356
y78-a9+a12
從散點圖可以看出y對x呈現(xiàn)線性相關關系,則y與x的線性回歸直線方程$\hat y=bx+a$必經(jīng)過的定點為(4,9).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設F1、F2分別是橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{7}$=1的左、右焦點.若點P在橢圓上,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.過原點作一條傾斜角為θ的直線與橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$交于A、B兩點,F(xiàn)為橢圓的左焦點,若AF⊥BF,且該橢圓的離心率$e∈[{\frac{{\sqrt{2}}}{2},\frac{{\sqrt{6}}}{3}}]$,則θ的取值范圍為$[{\frac{π}{6},\frac{5π}{6}}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設$α,β∈(0,\frac{π}{2})$且$tanα-tanβ=\frac{1}{cosβ}$,則(  )
A.$3α+β=\frac{π}{2}$B.$2α+β=\frac{π}{2}$C.$3α-β=\frac{π}{2}$D.$2α-β=\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上的點到直線4x-5y+40=0的最小距離為$\frac{15\sqrt{41}}{41}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知命題p:?x<1,都有l(wèi)og${\;}_{\frac{1}{3}}}$x<0,命題q:?x∈R,使得x2≥2x成立,則下列命題是真命題的是(  )
A.p∨qB.(¬p)∧(¬q)C.p∨(¬q)D.p∧q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓C的焦點坐標為F1(-2,0)和F2(2,0),一個短軸頂點$B(0,-\sqrt{5})$.
(1)求橢圓C的標準方程;
(2)已知過F1的直線與橢圓相交于A、B,傾斜角為45度,求△ABF2的面積.

查看答案和解析>>

同步練習冊答案