17.如圖,有一個(gè)正方體的木塊,E為棱AA1的中點(diǎn).現(xiàn)因?qū)嶋H需要,需要將其沿平面D1EC將木塊鋸開.請你畫出前面ABB1A1與截面D1EC的交線,并說明理由.

分析 取AB中點(diǎn)F,連結(jié)EF,則EF即為所求的面ABB1A1與截面D1EC的交線.

解答 解:取AB中點(diǎn)F,連結(jié)EF,則EF即為所求的面ABB1A1與截面D1EC的交線.
理由如下:
連結(jié)A1B,∵E為棱AA1的中點(diǎn),F(xiàn)是AB中點(diǎn),
∴EF∥A1B,
又∵A1B∥D1C,
∴EF∥D1C,
∴直線EF與直線D1C確定一個(gè)平面α,
∵直線D1C與直線外一點(diǎn)E都在平面α內(nèi),
∴平面α與平面D1EC重合,
∴EF即為所求的面ABB1A1與截面D1EC的交線.

點(diǎn)評 本題考查平面與截面交線的畫法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)常數(shù)λ>0,a>0,函數(shù)f(x)=$\frac{{x}^{2}}{λ+x}$-alnx.
(1)當(dāng)a=$\frac{3}{4}$λ時(shí),若f(x)最小值為0,求λ的值;
(2)對任意給定的正實(shí)數(shù)λ,a,證明:存在實(shí)數(shù)x0,當(dāng)x>x0時(shí),f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=2x-x2,則f(-1)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線l經(jīng)過直線2x+y-5=0與x-2y=0的交點(diǎn)P.
(Ⅰ)若直線l平行于直線l1:4x-y+1=0,求l的方程;
(Ⅱ)若直線l垂直于直線l1:4x-y+1=0,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某化工廠有8種產(chǎn)品,由于安全原因,有些產(chǎn)品不允許存放在同一倉庫.具體情況由下表給出(“╳”表示該兩種產(chǎn)品不能存放在同一倉庫)
12345678
1-
2-
3-
4-
5-
6-
7-
8-
則該廠至少需要幾個(gè)產(chǎn)品倉庫來存放這8種產(chǎn)品?( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.過點(diǎn)A(-1,1)且與直線x+3y+4=0平行的直線l的方程為x+3y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≤2\\ x≥1\\ y≥0\end{array}\right.$,則z=2x+y的最大值為( 。
A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知四面體ABCD的側(cè)面展開圖如圖所示,則其體積為( 。
A.2B.$\frac{3}{2}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=a|x+b|(a>0且a≠1,b∈R)是偶函數(shù),則下面的結(jié)論正確的是(  )
A.f(b-3)<f(a+2)B.f(b-3)>f(a+2)
C.f(b-3)=f(a+2)D.f(b-3)與f(a+2)的大小無法確定

查看答案和解析>>

同步練習(xí)冊答案