分析 由已知可得:an+2=an+1+an>0,可得bn=$\frac{{a}_{n+1}}{{a}_{n}{a}_{n+2}}$=$\frac{{a}_{n+1}}{{a}_{n}({a}_{n+1}+{a}_{n})}$=$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}+{a}_{n}}$,利用“裂項求和”即可得出.
解答 解:由已知可得:an+2=an+1+an>0,
∴bn=$\frac{{a}_{n+1}}{{a}_{n}{a}_{n+2}}$=$\frac{{a}_{n+1}}{{a}_{n}({a}_{n+1}+{a}_{n})}$=$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}+{a}_{n}}$,
∴數(shù)列{bn}的前n項和Sn=$(\frac{1}{{a}_{1}}-\frac{1}{{a}_{1}+{a}_{2}})$+$(\frac{1}{{a}_{2}}-\frac{1}{{a}_{2}+{a}_{3}})$+$(\frac{1}{{a}_{3}}-\frac{1}{{a}_{3}+{a}_{4}})$+…+$(\frac{1}{{a}_{n-1}}-\frac{1}{{a}_{n-1}+{a}_{n}})$+$(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n}+{a}_{n+1}})$
=$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{n-1}+{a}_{n}}$-$\frac{1}{{a}_{n}+{a}_{n+1}}$
=2-$\frac{1}{{a}_{n-1}+{a}_{n}}$-$\frac{1}{{a}_{n}+{a}_{n+1}}$<2.
故答案為:<.
點評 本題考查了“斐波那契數(shù)列”的通項公式及其性質、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | -$\frac{3}{4}$ | C. | -$\frac{4}{3}$或-$\frac{3}{4}$ | D. | -$\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0<θ<$\frac{π}{3}$) | B. | ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0≤θ<$\frac{π}{3}$) | ||
C. | ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0<θ≤$\frac{π}{3}$) | D. | ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0≤θ≤$\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a | B. | -a | C. | $\frac{2a}{3}$ | D. | $\frac{3a}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{3}$或1 | B. | -$\frac{13}{3}$或3 | C. | -$\frac{1}{3}$或-3 | D. | -$\frac{13}{3}$或1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com