11.若函數(shù)f(x),g(x)分別為R上的奇函數(shù)、偶函數(shù),且滿足f(x)-g(x)=ex
(1)求函數(shù)f(x)的解析式.
(2)求g(0)的值.

分析 (1)由題意用-x代替x,得f(-x)-g(-x)=e-x,利用f(x)、g(x)分別是R上的奇函數(shù)、偶函數(shù),轉(zhuǎn)化為關(guān)于f(x)和g(x)另外一個方程,再與已知方程聯(lián)列,解之可得f(x),g(x)的解析式;
(2)由(1)中g(shù)(x)的解析式,將x=0代入可得答案.

解答 解:(1)∵f(x),g(x)分別為R上的奇函數(shù),偶函數(shù)f(x)-g(x)=ex
∴f(-x)-g(-x)=e-x
∴-f(x)-g(x)=e-x
①-②得:f(x)=$\frac{1}{2}$(ex-e-x),
①+②得:g(x)=$\frac{1}{2}$(ex+e-x),
(2)g(0)=$\frac{1}{2}$(e0+e0)=1.

點評 本題考查的知識點函數(shù)奇偶性的性質(zhì),其中根據(jù)已知條件構(gòu)造出第二個方程-f(x)+g(x)=e-x,是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$y=2sin(\frac{π}{3}-x)-cos(\frac{π}{6}+x)(0≤x≤π)$的值域是( 。
A.$[-1,\frac{{\sqrt{3}}}{2}]$B.[-1,1]C.$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$D.$[-\frac{{\sqrt{3}}}{2},1]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知對數(shù)函數(shù)y=logax(a>0且a≠1)的圖象經(jīng)過點(4,2)
(1)求函數(shù)的解析式.
(2)求f(1),f(8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列命題錯誤的是( 。
A.命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個不為0則x2+y2≠0”.
B.若命題$p:?{x_0}∈R,x_0^2-{x_0}+1≤0$,則?p:?x∈R,x2-x+1>0.
C.△ABC中,sinA>sinB是A>B的充要條件.
D.?φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.當(dāng)且僅當(dāng)        ,x2>2x>log2x.(  )
A.3<x<4B.x>4C.0<x<2D.2<x<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為(  )
A.B.πC.$\frac{π}{2}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.$4{({\frac{16}{49}})^{-\frac{1}{2}}}+lg2+lg50$=( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$f(x)=2sinx•cos({x+\frac{π}{3}})+\frac{{\sqrt{3}}}{2}$.
(1)求$f({-\frac{π}{4}})$的值;
(2)若$x∈[{0,\frac{π}{2}}]$,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2+bx-lnx(a,b∈R).
(Ⅰ)設(shè)b=2-a,求f(x)的零點的個數(shù);
(Ⅱ)設(shè)a>0,且對于任意x>0,f(x)≥f(1),試比較lna與-2b的大。

查看答案和解析>>

同步練習(xí)冊答案