9.已知函數(shù)f(x)是定義域?yàn)镽的奇函數(shù),且f(-x)=f(2+x).
(I)求f(0)的值;
(II)證明函數(shù)f(x)是周期函數(shù).

分析 (I)由奇函數(shù)可得對(duì)任意x都有f(-x)=-f(x),取x=0可得;
(II)由f(-x)=f(2+x)和f(x)是R上的奇函數(shù)可得f(x+4)=f(x),由周期函數(shù)的定義可得.

解答 解:(I)∵函數(shù)f(x)是定義域?yàn)镽的奇函數(shù),
∴對(duì)任意x都有f(-x)=-f(x),
取x=0可得f(0)=-f(0),
解得f(0)=0;
(II)證明:∵f(-x)=f(2+x),f(x)是R上的奇函數(shù),
∴f(x+4)=f(x+2+2)=f(-x-2)=-f(x+2)=-f(-x)=f(x),
∴函數(shù)f(x)是周期為2的周期函數(shù).

點(diǎn)評(píng) 本題考查函數(shù)的周期性和函數(shù)的值,涉及函數(shù)的奇偶性,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=sin$\frac{x}{2}$cos$\frac{x}{2}$+$\frac{\sqrt{3}}{2}$cosx,x∈[0,$\frac{π}{2}$]的值域?yàn)閇$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)函數(shù)f(x)=3cos2($\frac{π}{8}$x+$\frac{π}{5}$)-2,若對(duì)任意的x∈R都有f(x1)≤f(x)≤f(x2),則|x1-x2|的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若函數(shù)f(x)=2x3+bx2+cx+d是奇函數(shù),定義域?yàn)閇2c-3,c],求b,c,d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中.角A,B,C的對(duì)邊分別為a,b,c,已知$\frac{a}$=$\frac{\sqrt{5}}{2}$,cosB=$\frac{\sqrt{5}}{5}$.
(I)求sinA;
(2)若c=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=sin(2x+$\frac{π}{6}$)(x∈[0,$\frac{7π}{6}$]),若方程f(x)=m恰好有三個(gè)根,分別為x1,x2,x3(x1<x2<x3),則x1+2x2+x3的值是( 。
A.$\frac{3π}{4}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.己知等差數(shù)列{an}中,a2=3,a4=7.
(1)求此數(shù)列的通項(xiàng)公式;
(2)求這個(gè)數(shù)列前7項(xiàng)的和S7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知銳角三角形ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且$tanB=\frac{{\sqrt{3}sinAsinC}}{{{{sin}^2}A+{{sin}^2}C-{{sin}^2}B}}$.
(Ⅰ)求角B的大;
(Ⅱ)若$b=\sqrt{3}$,求a+c的最大值,并求此時(shí)的三角形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在四面體OABC中,棱OA、OB、OC兩兩垂直,且OA=1,OB=2,OC=3,G為△ABC的重心,則$\overrightarrow{OG}$•($\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$)=$-\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案