20.已知函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)在區(qū)間[-$\frac{5π}{12}$,$\frac{π}{12}$]的端點上恰取相鄰的一個最大值點和最小值點,則ω的值為2.

分析 由題意可得有$\frac{1}{2}•$$\frac{2π}{ω}$=$\frac{π}{12}$+$\frac{5π}{12}$,由此求得ω的值.

解答 解:函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)在區(qū)間[-$\frac{5π}{12}$,$\frac{π}{12}$]的端點上恰取相鄰的一個最大值點和最小值點,
故有$\frac{1}{2}•$$\frac{2π}{ω}$=$\frac{π}{12}$+$\frac{5π}{12}$,求得ω=2,
故答案為:2.

點評 本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點為F2(1,0),且該橢圓過定點M(1,$\frac{\sqrt{2}}{2}$).
(I)求橢圓E的標準方程;
(Ⅱ)設(shè)點Q(2,0),過點F2作直線l與橢圓E交于A,B兩點,且$\overrightarrow{{F}_{2}A}$=λ$\overrightarrow{{F}_{2}B}$,若λ∈[-2,-1]以QA,QB為鄰邊作平行四邊形QACB,求對角線QC的長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≥8}\\{x≤4}\\{y≤3}\end{array}\right.$,則$\frac{y}{x}$的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求下列函數(shù)的定義域并用區(qū)間記號表示.
(1)y=$\sqrt{{x}^{2}-2x-3}$;
(2)y=$\root{3}{x}$$+\frac{x}{{x}^{2}-2x-3}$;
(3)y=$\sqrt{3-x}$$+arcsin\frac{x-2}{3}$;
(4)y=$\frac{x-6}{lgx}$$+\sqrt{25-{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,R為△ABC外接圓半徑,若$\frac{a}{cosA}$=$\frac{cosB}$,則△ABC是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}的前項和為Sn,a1=2,S3=S6,試求數(shù)列{an}的前多少項的和最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.教育局將招聘的5名研究生隨機分配到一中、二中、實驗、育才四所不同的學(xué)校,每所學(xué)校至少有一名研究生,則甲乙兩人同時被分配到一中的概率是( 。
A.$\frac{1}{10}$B.$\frac{1}{20}$C.$\frac{1}{30}$D.$\frac{1}{40}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.用分析法證明$\frac{{a}^{2}+^{2}}{2}$≥ab.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知直線l過點(0,1),且圓(x-1)2+(y+1)2=1上有且只有一個點到直線1的距離為1,則直線l的方程為y=1,或4x-3y+3=0.

查看答案和解析>>

同步練習(xí)冊答案