12.在復(fù)平面內(nèi)指出與復(fù)數(shù)z1=1+2i,z2=$\sqrt{2}$+$\sqrt{3}$i,z3=$\sqrt{3}$-$\sqrt{2}$i,z4=-2+i對(duì)應(yīng)的點(diǎn)Z1,Z2,Z3,Z4,試判斷這4個(gè)點(diǎn)是否在同一個(gè)圓上,并證明你的結(jié)論.

分析 直接利用復(fù)數(shù)對(duì)應(yīng)點(diǎn)到原點(diǎn)的距離,判斷求解即可.

解答 解:在同一個(gè)圓上.
復(fù)平面內(nèi)指出與復(fù)數(shù)z1=1+2i,z2=$\sqrt{2}$+$\sqrt{3}$i,z3=$\sqrt{3}$-$\sqrt{2}$i,z4=-2+i對(duì)應(yīng)的點(diǎn)Z1,Z2,Z3,Z4
因?yàn)閨Z1|=$\sqrt{{1}^{2}+{2}^{2}}=\sqrt{5}$,
|Z2|=$\sqrt{{(\sqrt{2})}^{2}+{(\sqrt{3})}^{2}}=\sqrt{5}$
|Z3|=$\sqrt{{(-\sqrt{2})}^{2}+{(\sqrt{3})}^{2}}=\sqrt{5}$
|Z4|=$\sqrt{{1}^{2}+(-{2)}^{2}}=\sqrt{5}$.
這4個(gè)點(diǎn)是在同一個(gè)圓上.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的模的求法,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ln(1+x)-$\frac{ax}{x+a}$.
(Ⅰ)證明:當(dāng)a=1,x>0時(shí),f(x)>0;
(Ⅱ)若a>1,討論f(x)在(0,+∞)上的單調(diào)性;
(Ⅲ)設(shè)n∈N*,比較$\frac{1}{2}+\frac{2}{3}+…+\frac{n}{n+1}$與n-ln(1+n)的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=lnx(lnx-1)+b,且f′(1)=a,f(1)=0.
(Ⅰ)求a,b的值;
(Ⅱ)設(shè)F(x)=x[f′(x)-1],求函數(shù)F(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知sin(α+$\frac{π}{3}$)=$\frac{3}{5}$,0<α$<\frac{π}{2}$,求tan(α-$\frac{π}{6}$)及sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{{x}^{2}-2x,x≤0}\end{array}\right.$的零點(diǎn)個(gè)數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若不等式sin2θ-(2$\sqrt{2}$+$\sqrt{2}$a)sin(θ+$\frac{π}{4}$)-$\frac{2\sqrt{2}}{cos(θ-\frac{π}{4})}$>-3-2a對(duì)θ∈[0,$\frac{π}{2}$]恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,3)B.(-∞,2$\sqrt{2}$)C.(2$\sqrt{2}$,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.若直線kx-y-k+2=0與x-ky+k=0的交點(diǎn)在第二象限,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={x|x2-4>0},B={x|x-2<0},則(∁RA)∩B等于( 。
A.(-∞,2)B.[-2,2]C.(-2,2)D.[-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知全集U=R,集合A={x|y=log2(x-1)},B={y|y=2x},則(∁UA)∩B=( 。
A.(-∞,0)B.(0,1]C.(-∞,1)D.(1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案