分析 (Ⅰ)由離心率得到a,c,b的關(guān)系,進(jìn)一步把橢圓方程用含有c的代數(shù)式表示,再結(jié)合點(diǎn)(1,$\frac{3}{2}$)在橢圓上求得c,則橢圓方程可求;
(Ⅱ)設(shè)出M,N的坐標(biāo),聯(lián)立直線方程和橢圓方程,由判別式大于0得到m2<4k2+3,再結(jié)合根與系數(shù)關(guān)系得到MN中點(diǎn)P的坐標(biāo)為(-$\frac{4km}{3+4{k}^{2}}$,$\frac{3m}{3+4{k}^{2}}$),求出MN的垂直平分線l′方程,由P在l′上,得到4k2+8km+3=0.結(jié)合m2<4k2+3求得k的取值范圍
解答 解:(Ⅰ)由題意橢圓的離心率e=$\frac{1}{2}$.
∴$\frac{c}{a}$=$\frac{1}{2}$ 得a=2c,∴b2=a2-c2=3c2,
∴橢圓方程為$\frac{{x}^{2}}{4{c}^{2}}+\frac{{y}^{2}}{3{x}^{2}}$=1,
又點(diǎn)(1,$\frac{3}{2}$)在橢圓上
∴$\frac{1}{4{x}^{2}}+\frac{(\frac{3}{2})^{2}}{3{c}^{2}}$=1,
∴c2=1,
∴橢圓的方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(Ⅱ)設(shè)設(shè)M(x1,y1),N(x2,y2),
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=kx+m}\end{array}\right.$,
消去y并整理得(3+4k2)x2+8kmx+4m2-12=0.
∵直線y=kx+m與橢圓有兩個(gè)交點(diǎn),
∴△=(8km)2-4(3+4k2)(4m2-12)>0,即m2<4k2+3,
又x1+x2=-$\frac{8km}{3+4{k}^{2}}$,
∴MN中點(diǎn)P的坐標(biāo)為(-$\frac{4km}{3+4{k}^{2}}$,$\frac{3m}{3+4{k}^{2}}$),
設(shè)MN的垂直平分線l'方程:$y=-\frac{1}{k}(x-\frac{1}{5})$
∵p在l′上$\frac{3m}{{3+4{k^2}}}=-\frac{1}{k}(-\frac{4km}{{3+4{k^2}}}-\frac{1}{5})$
即4k2+5km+3=0,$m=-\frac{{4{k^2}+3}}{5k}$,
將上式代入得$\frac{{{{(4{k^2}+3)}^2}}}{{25{k^2}}}<4{k^2}+3$,
∴${k^2}>\frac{1}{7}$,
即 $k>\frac{{\sqrt{7}}}{7}或k<-\frac{{\sqrt{7}}}{7}$
∴k的取值范圍為$(-∞,-\frac{{\sqrt{7}}}{7})∪(\frac{{\sqrt{7}}}{7},+∞)$.
點(diǎn)評(píng) 本題考查了橢圓方程的求法,考查了直線和圓錐曲線間的關(guān)系,涉及直線和圓錐曲線的關(guān)系問題,常采用聯(lián)立直線方程和圓錐曲線方程,利用根與系數(shù)的關(guān)系求解,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 6 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,1) | C. | (0,$\frac{1}{2}$) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若“p∨q”為假命題,則p,q均為假命題 | |
B. | “x=1”是“x≥1”的充分不必要條件 | |
C. | “sinx=$\frac{1}{2}$”的必要不充分條件是“x=$\frac{π}{6}$” | |
D. | 若命題p:?x0∈R,x02≥0,則命題¬p:?x∈R,x2<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com