3.直線$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=-\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t是參數(shù))上與點(diǎn)P(2,-$\sqrt{3}$)距離等于4的點(diǎn)Q的坐標(biāo)為(4,$\sqrt{3}$)或(0,-3$\sqrt{3}$).

分析 由題意,$(\frac{1}{2}t)^{2}+(\frac{\sqrt{3}}{2}t)^{2}$=16,求出t,即可求出點(diǎn)Q的坐標(biāo).

解答 解:由題意,$(\frac{1}{2}t)^{2}+(\frac{\sqrt{3}}{2}t)^{2}$=16,
∴t=±4,
∴Q(4,$\sqrt{3}$)或(0,-3$\sqrt{3}$).
故答案為:(4,$\sqrt{3}$)或(0,-3$\sqrt{3}$).

點(diǎn)評(píng) 本題考查參數(shù)方程,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,若a2=b2-bc+c2,則A=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.原始社會(huì)時(shí)期,人們通過在繩子上打結(jié)來計(jì)算數(shù)量,即“結(jié)繩計(jì)數(shù)”.當(dāng)時(shí)有位父親,為了準(zhǔn)確記錄孩子的成長天數(shù),在粗細(xì)不同的繩子上打結(jié),由細(xì)到粗,滿七進(jìn)一,那么孩子已經(jīng)出生510天.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.計(jì)算定積分:${∫}_{0}^{\frac{π}{2}}$(x+sinx)dx=$\frac{{π}^{2}}{8}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.⊙F1:(x+1)2+y2=9.⊙F2:(x-1)2+y2=1.動(dòng)圓M與⊙F1內(nèi)切,與⊙F2外切.
(1)求M點(diǎn)的軌跡C的方程;
(2)設(shè)動(dòng)直線l:y=kx+m與曲線C交于A,B兩點(diǎn),(O為原點(diǎn))滿足|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|.對(duì)滿足條件的動(dòng)直線l中取兩條直線l1,l2,其交點(diǎn)是N,當(dāng)|$\overrightarrow{ON}$|=$\frac{4\sqrt{21}}{7}$時(shí),求l1,l2的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在銳角△ABC中,已知∠A,∠B,∠C成等差數(shù)列,設(shè)y=sinA-cos(A-C+2B),則y的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知直線a,b與平面α,下列命題正確的序號(hào)是④.
①若a∥α,b?α,則a∥b;
②若a∥α,b∥α,則a∥b;
③若a∥b,b?α,則a∥α;
④若a∥b,b?α,則a∥α或a?α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.方程($\frac{1}{3}$)x=|x2-4x+3|的解的個(gè)數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若圓(x-$\sqrt{3}$)2+(y-1)2=3與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線相切,則此雙曲線的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{7}}{2}$C.2D.$\sqrt{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案