7.若f(x)是定義在R上的偶函數(shù),在(-∞,0]上是增函數(shù),且f(1)=0,則使f(x)<0的x的取值范圍是(  )
A.(-∞,-1)B.(-1,1)C.(-∞,-1)∪(1,+∞)D.(1,+∞)

分析 根據(jù)函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是增函數(shù),可得函數(shù)在[0,+∞)上是減函數(shù),進(jìn)而將f(x)<0,轉(zhuǎn)化為f(x)<f(1),即可確定x的取值范圍.

解答 解:∵函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是增函數(shù),
∴函數(shù)在[0,+∞)上是減函數(shù)
∵f(1)=0,f(x)<0
∴f(x)<f(1)
∴|x|>1
∴x<-1或x>1
∴使得f(x)<1的x的取值范圍是(-∞,-1)∪(1,+∞),
故選:C.

點(diǎn)評(píng) 本題以函數(shù)奇偶性為例,考查了用函數(shù)的性質(zhì)解不等式,屬于基礎(chǔ)題.解題時(shí)應(yīng)該注意函數(shù)單調(diào)性與奇偶性的內(nèi)在聯(lián)系,是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.與曲線y=x2相切,且與直線x+2y+1=0,垂直的直線的方程為( 。
A.y=2x-2B.y=2x+2C.y=2x-1D.y=2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若一條直線同時(shí)和兩個(gè)曲線相切我們稱此直線為兩曲線的公切線,已知f(x)=x2,g(x)=-x2+2x+a
(1)若f(x)與g(x)只有一條公切線,求實(shí)數(shù)a值;
(2)若f(x)與g(x)有兩條公切線,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,在(0,$\frac{π}{2}$)內(nèi)單調(diào)遞增,且以π為最小正周期的偶函數(shù)是(  )
A.y=tan|x|B.y=|tanx|C.y=cot|x|D.y=|cotx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.給出如下定義:對(duì)函數(shù)y=f(x),x∈D.若存在實(shí)常數(shù)C,對(duì)任意的x1∈D,存在唯一的x2∈D,使得$\frac{f({x}_{1})+f({x}_{2})}{2}$=C成立,則稱函數(shù)y=f(x)為“和諧函數(shù)”,常數(shù)C為函數(shù)y=f(x)的“和諧數(shù)”,若函數(shù)g(x)=lnx,x∈[e2,e3]為“和諧函數(shù)”,則其可能的“和諧數(shù)”為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+2≥0}\\{y≥0}\\{x+y≤2}\end{array}\right.$則z=max{3x-y,4x-2y},則z的取值范圍是[-10,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為了了解某地區(qū)的1003名學(xué)生的數(shù)學(xué),打算從中抽取一個(gè)容量為50的樣本,現(xiàn)用系統(tǒng)抽樣的方法,需要從總體中剔除3個(gè)個(gè)體,在整個(gè)過程中,每個(gè)個(gè)體被剔除的概率和每個(gè)個(gè)體被抽取的概率分別為( 。
A.$\frac{3}{1003}$,$\frac{1}{20}$B.$\frac{1000}{1003}$,$\frac{1}{20}$C.$\frac{3}{1003}$,$\frac{50}{1003}$D.$\frac{1000}{1003}$,$\frac{50}{1003}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.等比數(shù)列{an}的前n項(xiàng)和為Sn,且Sm=x,S2m=y,S3m=z,則( 。
A.x+y=zB.y2=x•zC.x2+y2=xy+xzD.2y=x+z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.命題“?x∈R,x2+2x+5>0”的否定是?x0∈R,x02+2x0+5≤0.

查看答案和解析>>

同步練習(xí)冊(cè)答案