2.已知數(shù)列{an}中,a1=0,an+1=$\frac{{a}_{n}-\sqrt{3}}{\sqrt{3}{a}_{n}+1}$(n∈N*),則a1+a2+…+a2015=( 。
A.-$\sqrt{3}$B.0C.$\sqrt{3}$D.1008$\sqrt{3}$

分析 通過計(jì)算出前幾項(xiàng),找出其周期,進(jìn)而計(jì)算即得結(jié)論.

解答 解:∵a1=0,an+1=$\frac{{a}_{n}-\sqrt{3}}{\sqrt{3}{a}_{n}+1}$(n∈N*),
∴a2=$\frac{{a}_{1}-\sqrt{3}}{\sqrt{3}{a}_{1}+1}$=$\frac{0-\sqrt{3}}{0+1}$=-$\sqrt{3}$,
a3=$\frac{{a}_{2}-\sqrt{3}}{\sqrt{3}{a}_{2}+2}$=$\frac{-\sqrt{3}-\sqrt{3}}{\sqrt{3}×(-\sqrt{3})+1}$=$\sqrt{3}$,
a4=$\frac{{a}_{3}-\sqrt{3}}{\sqrt{3}{a}_{3}+1}$=$\frac{\sqrt{3}-\sqrt{3}}{\sqrt{3}×\sqrt{3}+1}$=0,
∴數(shù)列{an}是周期為3的周期數(shù)列,
且a1+a2+a3=0-$\sqrt{3}$+$\sqrt{3}$=0,
∵2015=671×3+2,
∴a1+a2+…a2015
=671×0+a2014+a2015
=0-$\sqrt{3}$+$\sqrt{3}$
=0,
故選:B.

點(diǎn)評(píng) 本題考查數(shù)列的簡(jiǎn)單性質(zhì),找出周期是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.用min{a,b}表示a,b兩數(shù)中的最小值.若函數(shù)f(x)=min{|x|,|x+t|}的圖象關(guān)于直線$x=-\frac{1}{4}$對(duì)稱,則t的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.對(duì)任意x,y∈R,z=|x+1|-|x-1|-|y-4|-|y|的最大值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某射手射擊所得環(huán)數(shù)ξ的分布列如下:
ξ78910
Px0.10.3y
已知ξ的數(shù)學(xué)期望E(ξ)=8.9,則y的值為(  )
A.0.8B.0.6C.0.4D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知甲、乙、丙、丁、戊、己等6人.(以下問題用數(shù)字作答)
(1)邀請(qǐng)這6人去參加一項(xiàng)活動(dòng),必須有人去,去幾人自行決定,共有多少種不同的情形?
(2)這6人同時(shí)加入6項(xiàng)不同的活動(dòng),每項(xiàng)活動(dòng)限1人,其中甲不參加第一項(xiàng)活動(dòng),乙不參加第三項(xiàng)活動(dòng),共有多少種不同的安排方法?
(3)將這6人作為輔導(dǎo)員安排到3項(xiàng)不同的活動(dòng)中,每項(xiàng)活動(dòng)至少安排1名輔導(dǎo)員;求丁、戊、己恰好被安排在同一項(xiàng)活動(dòng)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知整數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+2y+2≤0}\\{2x-y+1≥0}\end{array}\right.$,設(shè)z=2x-3y,則(  )
A.z有最大值1,無最小值B.z有最大值2,無最小值
C.z有最小值1,無最大值D.z有最小值2,無最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在平面幾何里有射影定理:設(shè)三角形ABC的兩邊AB⊥AC,D是A點(diǎn)在BC上的射影,則AB2=BD•BC.拓展到空間,在四面體A-BCD中,CA⊥面ABD,點(diǎn)O是A在面BCD內(nèi)的射影,且O在面BCD內(nèi),類比平面三角形射影定理,得出正確的結(jié)論是( 。
A.S△ABC2=S△BOC•S△BDCB.S△ABD2=S△BOD•S△BDC
C.S△ADC2=S△DOC•S△BDCD.S△DBC2=S△ABD•S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)y=$\frac{1}{3}$x3-ax2-3a2x-4在(3,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.(-3,0)B.[-3,0)C.[-3,1]D.(-3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某品牌專賣店準(zhǔn)備在五一期間舉行促銷活動(dòng),根據(jù)市場(chǎng)調(diào)查,該店決定從4種不同品牌的洗衣機(jī),2種不同品牌的電視機(jī)和3種不同品牌的空調(diào)中,選出4種不同品牌的商品進(jìn)行促銷,該店對(duì)選出的商品采用的促銷方案是有獎(jiǎng)銷售,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高200元,同時(shí),若顧客購買任何一種品牌的商品,則允許有3次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次中獎(jiǎng)都獲得m(m>0)元獎(jiǎng)金.假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)的概率都是$\frac{2}{3}$.
(1)求選出的4種不同品牌商品中,洗衣機(jī)、電視機(jī)、空調(diào)都至少有一種且至多有兩種品牌的概率;
(2)設(shè)顧客在3次抽獎(jiǎng)中所獲得的獎(jiǎng)金總額(單位:元)為隨機(jī)變量X.請(qǐng)寫出X的分布列和數(shù)學(xué)期望;
(3)在(2)的條件下,問該店若想采用此促銷方案獲利,則每次中獎(jiǎng)獎(jiǎng)金要低于多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案