14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,將函數(shù)g(x)=f(x)-x-1的零點(diǎn)按從小到大的順序排列,構(gòu)成數(shù)列{an},則該數(shù)列的通項(xiàng)公式為(  )
A.an=n-2B.an=nC.an=n(n-1)D.an=2n-2

分析 根據(jù)函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,h(x)=x+1,畫(huà)出圖象,得出等差數(shù)列即可得出數(shù)列通項(xiàng)公式.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,
h(x)=x+1,f(x)=f(x-1),x>0,函數(shù)的周期為1,函數(shù)值增加1,
如圖:

根據(jù)f(x)與y=x+1的交點(diǎn)判斷函數(shù)g(x)=f(x)-x-1的零點(diǎn),
a1=-1,a2=0,a3=1,
通過(guò)圖象可判斷{an}為等差數(shù)列
得出:an=n-2,
故選;A.

點(diǎn)評(píng) 本題考查了函數(shù)的零點(diǎn),與函數(shù)圖象的交點(diǎn)問(wèn)題,屬于運(yùn)用圖象,結(jié)合等差數(shù)列的知識(shí)綜合參考的題目,關(guān)鍵是運(yùn)用分段函數(shù)畫(huà)出圖象即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x2-1(x>0),設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N*
(1)用xn表示xn+1
(2)求證:xn+1≤xn對(duì)一切正整數(shù)n都成立的充要條件為x1≥1.
(3)x1=2,求證:$\frac{1}{{x}_{1}+1}$+$\frac{1}{{x}_{2}+1}$+…$\frac{1}{{x}_{n}+1}$≤$\frac{{2}^{n}-1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若x,y都是銳角,且sinx=$\frac{\sqrt{5}}{5}$,tany=$\frac{1}{3}$,則x+y=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某超市舉辦促銷(xiāo)活動(dòng),凡購(gòu)物滿100元的顧客將獲得3次模球抽獎(jiǎng)機(jī)會(huì),抽獎(jiǎng)盒中放有除顏色外完全相同的紅球、黃球和黑球各1個(gè),顧客每次摸出1個(gè)球再放回,規(guī)定摸到紅球獎(jiǎng)勵(lì)10元,摸到黃球獎(jiǎng)勵(lì)5元,摸到黑球無(wú)獎(jiǎng)勵(lì).
(Ⅰ)求其前2次摸球所獲獎(jiǎng)金大于10元的概率;
(Ⅱ)求其3次摸球獲得獎(jiǎng)金恰為10元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于點(diǎn)D,DE⊥AC,交AC的延長(zhǎng)線于點(diǎn)E.若AE=8,AB=10,則CE的長(zhǎng)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.曲線y=ex,直線x=0,x=$\frac{1}{2}$與x軸圍成的平面圖形繞x軸旋轉(zhuǎn)一周得到旋轉(zhuǎn)體的體積是(  )
A.$\frac{(e-1)π}{2}$B.$\frac{(e-1){π}}{3}$C.$\frac{(e-1)π}{4}$D.$\frac{(e-1)π}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.異面直線l與m所成的角為$\frac{π}{3}$,異面直線l與n所成的角為$\frac{π}{4}$,則異面直線m與n所成角的范圍是( 。
A.[$\frac{π}{6}$,$\frac{π}{2}$]B.[$\frac{π}{12}$,$\frac{π}{2}$]C.[$\frac{π}{12}$,$\frac{7π}{12}$]D.[$\frac{π}{6}$,$\frac{7π}{12}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.計(jì)算:($\frac{4}{9}$)${\;}^{\frac{1}{2}}$+(-5.6)0-(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$+0.125${\;}^{-\frac{1}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知方程組$\left\{\begin{array}{l}{lo{g}_{81}x+lo{g}_{64}y=4}\\{lo{g}_{x}81-lo{g}_{y}64=1}\end{array}\right.$的解為$\left\{\begin{array}{l}{x={x}_{1}}\\{y={y}_{1}}\end{array}\right.$和$\left\{\begin{array}{l}{x={x}_{2}}\\{y={y}_{2}}\end{array}\right.$,則log18(x1x2y1y2)=12.

查看答案和解析>>

同步練習(xí)冊(cè)答案