6.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$•$\overrightarrow$=10,|$\overrightarrow{a}$+$\overrightarrow$|=5$\sqrt{2}$,則|$\overrightarrow$|=5.

分析 先求出|$\overrightarrow{a}$|,再求出|$\overrightarrow{a}$+$\overrightarrow$|2,問題得以解決.

解答 解:∵向量$\overrightarrow{a}$=(1,2),
∴|$\overrightarrow{a}$|=$\sqrt{5}$,
∵$\overrightarrow{a}$•$\overrightarrow$=10,
∴|$\overrightarrow{a}$+$\overrightarrow$|2=|$\overrightarrow{a}$|2+|$\overrightarrow$|2+2$\overrightarrow{a}$•$\overrightarrow$=(5$\sqrt{2}$)2,
∴|$\overrightarrow$|2=25,
∴|$\overrightarrow$|=5
故答案為:5.

點評 本題考查向量的模的求法,向量數(shù)量積的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.?dāng)?shù)列{an}的通項公式an=ncos$\frac{nπ}{2}$,其前n項和為Sn,則S2016等于(  )
A.2016B.1008C.504D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)化簡:$\frac{{sin({π-α})•sin({\frac{3}{2}π-α})•sin({-π-α})}}{{sin({2π-α})•cos({\frac{π}{2}+α})}}$.
(2)已知$sin({\frac{5}{12}π+α})=\frac{1}{3}$,求$sin({\frac{π}{12}-α})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知等比數(shù)列{an}的首項為a1,公比為q,前n項和為Sn,記數(shù)列{log2an}的前n項和為Tn,若a1∈[$\frac{1}{2016}$,$\frac{1}{1949}$],且$\frac{{S}_{6}}{{S}_{3}}$=9,則當(dāng)n=11時,Tn有最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果偶函數(shù)f(x)在[0,+∞)上是增函數(shù)且最小值是2,那么f(x)在(-∞,0]上是( 。
A.減函數(shù)且最小值是2B.減函數(shù)且最大值是2
C.增函數(shù)且最小值是2D.增函數(shù)且最大值是2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(log2x-2)(log4x-$\frac{1}{2}$).
(1)當(dāng)x∈[1,4]時,求該函數(shù)的值域;
(2)若f(x)≤mlog2x對于x∈[4,16]恒成立,求m得取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知雙曲線Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點為A,與x軸平行的直線交Γ于B,C兩點,記$\overrightarrow{AB}$•$\overrightarrow{AC}$=m,若Γ的離心率為$\sqrt{2}$,則m的取值的集合是{0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=(a2-3a+3)ax是指數(shù)函數(shù),則當(dāng)x∈[-1,2]時,此函數(shù)的值域是( 。
A.[-2,4]B.[$\frac{1}{2}$,4]C.[-2,0)D.(-2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知集合A={a|關(guān)于x的方程$\frac{x+a}{{{x^2}-1}}=1$有唯一實數(shù)解,a∈R},用列舉法表示集合A=$\left\{{-1,1,-\frac{5}{4}}\right\}$.

查看答案和解析>>

同步練習(xí)冊答案