11.已知f(x)=$\left\{\begin{array}{l}{2^x}+8,x≤0\\{log_3}x+ax,x>0\end{array}$,若f(f(0))=8a,則實數(shù)a等于( 。
A.2B.-2C.3D.-3

分析 求出f(0)的值,代入函數(shù)的表達式得到關于a的方程,解出即可.

解答 解:f(0)=1+8=9,
∴f(f(0))=f(9)=${log}_{3}^{9}$+9a=8a,
解得:a=-2,
故選:B.

點評 本題考查了函數(shù)求值問題,考查指數(shù)、對數(shù)的運算,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)f(x)=x-2lnx的極值點為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設實數(shù)x∈R,則y=x+$\frac{1}{x+1}$的值域為(-∞,-3]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設f(x)=(x2-$\frac{3}{m}$x+$\frac{5}{m^2}$)emx,其中m≠0.
(1)討論f(x)的單調(diào)性;
(2)若g(x)=f(x)-$\frac{1}{m}$x-5恰有兩個零點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知$\vec a$=(m,1),$\vec b$=(2,-2),若$\vec a$⊥$\vec b$,則m的值是(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)已知函數(shù)f(x)=x2(x-a),若f(x)在(2,3)上單調(diào)遞減,求實數(shù)a的取值范圍;
(2)已知函數(shù)f(x)=x3-3ax2+2a2x+1在[0,2]上是單調(diào)遞增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某企業(yè)有甲、乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為$\frac{3}{5}$和$\frac{2}{3}$,現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B,設甲、乙兩組的研發(fā)相互獨立.
(1)求只有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品A研發(fā)成功,預計企業(yè)可獲利潤50萬元,若新產(chǎn)品B研發(fā)成功,預計企業(yè)可獲利潤60萬元,求該企業(yè)可獲利潤的均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.經(jīng)過1小時,時針旋轉(zhuǎn)的角是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.過拋物線y2=4x的焦點作直線與其交于M、N兩點,作平行四邊形MONP,則點P的軌跡方程為y2=4(x-2).

查看答案和解析>>

同步練習冊答案