分析 Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),分別令n=1,2,3時,可得a1=1,a2=$\sqrt{2}$-1,a3=$\sqrt{3}-\sqrt{2}$,…,猜想an=$\sqrt{n}-\sqrt{n-1}$.利用遞推式可得${a}_{n}+\frac{1}{{a}_{n}}+{a}_{n+1}-\frac{1}{{a}_{n+1}}$=0.利用數(shù)學歸納法證明即可.
解答 解:∵Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),
∴當n=1,2,3時,可得a1=1,a2=$\sqrt{2}$-1,a3=$\sqrt{3}-\sqrt{2}$,…,猜想an=$\sqrt{n}-\sqrt{n-1}$.
下面利用數(shù)學歸納法證明.
(1)當n=1時,a1=1=$\sqrt{1}-\sqrt{0}$成立;
(2)假設(shè)當n=k(k∈N*)時,${a}_{k}=\sqrt{k}-\sqrt{k-1}$成立.
∵Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),${S}_{n+1}=\frac{1}{2}({a}_{n+1}+\frac{1}{{a}_{n+1}})$,
∴an+1=$\frac{1}{2}({a}_{n+1}+\frac{1}{{a}_{n+1}})$-$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),
化為${a}_{n}+\frac{1}{{a}_{n}}+{a}_{n+1}-\frac{1}{{a}_{n+1}}$=0.
則當n=k+1時,$(\sqrt{k}-\sqrt{k-1})$+$\frac{1}{\sqrt{k}-\sqrt{k-1}}$+${a}_{k+1}-\frac{1}{{a}_{k+1}}$=0,解得ak+1=$\sqrt{k+1}-\sqrt{k}$.
∴當n=k+1時,ak+1=$\sqrt{k+1}-\sqrt{k}$成立.
綜上(1)(2)可得:?n∈N*,an=$\sqrt{n}-\sqrt{n-1}$成立.
點評 本題考查了數(shù)列遞推式的應(yīng)用、數(shù)學歸納法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{8}{9}$ | C. | $\frac{3}{8}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
P(Χ2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
x | 1 | 2 | 3 |
f(x) | 1 | 3 | 1 |
x | 1 | 2 | 3 |
g(x) | 3 | 2 | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com