1.三角形的內(nèi)角x滿足2cos2x+1=0,則角x=60°或120°.

分析 由方程可解得cos2x=-$\frac{1}{2}$,從而解x即可.

解答 解:2cos2x+1=0,
∴cos2x=-$\frac{1}{2}$,
∵x為三角形的內(nèi)角,
∴0<2x<360°,
∴2x=120°,或2x=240°,
∴x=60°,或x=120°,
故答案為:60°或120°.

點(diǎn)評 本題考查了三角函數(shù)的值求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(0,-1,1),$\overrightarrow$(4,1,0),|λ$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{29}$且λ>0,則λ=( 。
A.-2B.2C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.化簡:$\frac{sin(π-a)•sin(\frac{3π}{2}+a)•tan(-a)}{cos(2π-a)•sin(-a)•tan(π+a)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率e=$\frac{\sqrt{5}}{3}$,且橢圓C1的短軸長為4.
(1)求橢圓C1的方程;
(2)若橢圓C1的左右焦點(diǎn)分別為F1、F2,拋物線C2:y2=2px(p>0)與橢圓C1交于不同兩點(diǎn)P、Q.且$\overrightarrow{P{F}_{2}}$=$\overrightarrow{{F}_{2}Q}$.求拋物線C2的準(zhǔn)線方程;
(3)若直線l與橢圓C1交于不同兩點(diǎn)M、N.且$\overrightarrow{OM}•\overrightarrow{ON}$=0,求證:直線l恒與一個定圓相切,并求出定圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,角A、B、C的對邊分別為a、b、c,且滿足(2cosA-1)sinB+2cosA=1
(1)求A的大;
(2)若6b2=a2+3c2,求$\frac{sinB}{sinC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)F(x)=xf(x)(x∈R)在(-∞,0)上是減函數(shù),且f(x)是奇函數(shù),則對任意實(shí)數(shù)a,下列不等式成立的是(  )
A.F(-$\frac{3}{4}$)≤F(a2-a+1)B.F(-$\frac{3}{4}$)>F(a2-a+1)C.F(-$\frac{3}{4}$)≥F(a2+a+1)D.F(-$\frac{3}{4}$)<F(a2+a+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)x0為函數(shù)f(x)=sinπx的零點(diǎn),且滿足|x0|+f(x0+$\frac{1}{2}$)<33,則這樣的零點(diǎn)有65個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)P是雙曲線$\frac{{x}^{2}}{4}$-y2=1上的意一點(diǎn),點(diǎn)P到雙曲線的兩條漸近線的距離分別為d1,d2,則( 。
A.d1+d2=$\frac{4\sqrt{5}}{5}$B.d1•d2=$\frac{4\sqrt{5}}{5}$C.d1+d2=$\frac{4}{5}$D.d1•d2=$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx,φ(x)=$\frac{a}{x+1}$,a為正常數(shù).
(1)函數(shù)y=f(x)的圖象上任意不同的兩點(diǎn)A(x1,y1),B(x2,y2),線段AB的中點(diǎn)為C(x0,y0),記直線AB的斜率為k,試證明:k>f′(x0);
(2)若g(x)=|f(x)|+φ(x),且對任意的x1,x2∈(0,2],且x1≠x2,都有$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$<-1,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案