分析 (1)利用賦值法即可求f(0),根據(jù)函數(shù)f(x)的奇偶性的定義,利用賦值法即可得到結(jié)論;
(2)根據(jù)函數(shù)單調(diào)性的定義即可判斷f(x)的單調(diào)性;
(3)將不等式進(jìn)行等價(jià)轉(zhuǎn)化,結(jié)合函數(shù)的奇偶性和單調(diào)性的性質(zhì)即可得到結(jié)論.
解答 解:(1)∵f(x)對(duì)一切x,y∈R都有f(x+y)=f(x)+f(y),
令x=y=0,得:f(0)=f(0)+f(0),∴f(0)=0,
令y=-x,得f(x-x)=f(x)+f(-x)=f(0)=0,
∴f(-x)=-f(x),∴f(x)是奇函數(shù). …(3分)
(2)∵f(x)對(duì)一切x,y∈RR都有f(x+y)=f(x)+f(y),
當(dāng)x>0時(shí),f(x)<0.
令x2>x1,則x2-x1>0,且f(x2-x1)=f(x2)+f(-x1)<0,
由(1)知,f(x2)-f(x1)<0,∴f(x2)<f(x1).
∴f(x)在R上是減函數(shù). …(7分)
(3)若關(guān)于x的不等式f(4x-3•2x)+f(4x-k)≤0在x∈[0,1]上有解,
即f(4x-3•2x)≤f(k-4x)在x∈[0,1]上有解,又f(x)是R上的減函數(shù),
所以關(guān)于x的不等式4x-3•2x≥k-4x在x∈[0,1]上有解,
即關(guān)于x的不等式k≤2•4x-3•2x在x∈[0,1]上有解,即k≤(2•4x-3•2x)max
設(shè)g(x)=2•4x-3•2x,x∈[0,1],令t=2x,則g(t)=2t2-3t,t∈[1,2],
則$g(t)=2{(t-\frac{3}{4})^2}-\frac{9}{8},t∈[1,2]$,
所以g(t)max=g(2)=2,∴k≤2,
故 實(shí)數(shù)k的取值范圍是(-∞,2].…(12分)
點(diǎn)評(píng) 本題主要考查抽象函數(shù)的應(yīng)用,利用賦值法結(jié)合函數(shù)單調(diào)性和奇偶性的定義是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{8}$) | B. | ($\frac{1}{4}$,0) | C. | (1,0) | D. | (0,$\frac{1}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,4) | B. | (-1,1) | C. | (-2,4) | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<c<b<d | B. | a<d<c<b | C. | a<b<c<d | D. | a<c<d<b |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com