3.某市交警部門在調(diào)查一起車禍的過程中,所有的目擊人都指證肇事車是一輛普通桑塔納出租車,但由于天黑,均未看清該車的車牌號碼及顏色,而該市有兩家出租車公司,其中家公司有100量桑塔納出租車,3000輛帕薩特出租車,乙公司有3000輛桑塔納出租車,100輛帕薩特出租車,交警部門認定肇事車為哪個公司比較合理?乙公司.(填“甲公司”或“乙公司”)

分析 分別計算甲乙公司的出租車肇事的概率,概率較大的公司可能性較大.

解答 解:該市兩家出租車公司共有桑塔納出租車3100輛,
則甲公司出租車肇事的概率為P=$\frac{100}{3100}=\frac{1}{31}$,
乙公司出租車肇事的概率為P=$\frac{3000}{3100}=\frac{30}{31}$,
顯然乙公司肇事的概率遠大于甲公司肇事的概率.
故認定乙公司肇事較合理.
故答案為:乙公司.

點評 本題考查了古典概型的概率計算,概率的意義,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.(1)計算:2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$;
(2)已知a>0,a≠1,若loga(2x+1)<loga (4x-3),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,則輸出S的值是( 。
A.336B.$\frac{1}{336}$C.2016D.$\frac{1}{2016}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在極坐標系中,從四條曲線C1:ρ=1、C2:θ=$\frac{π}{3}$(ρ≥0)、C3:ρ=cosθ、C4:ρsinθ=1中隨機選取兩條,記它們的交點個數(shù)為隨機變量ξ,則隨機變量ξ的數(shù)學期望Eξ=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.從所有棱長均為2的正四棱錐的5個頂點中任取3個點,設隨機變量ξ表示這三個點所構(gòu)成的三角形的面積,則其數(shù)學期望Eξ=$\frac{2\sqrt{3}+6}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知△ABC中,A、B、C所對的邊分別為a、b、c,且bsinB=(sinA-sinC)(a+c)數(shù)列an=n2n-1(|sinnA|+|cosnA|),
(1)求A;  
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知甲盒內(nèi)有大小相同的1個紅球、1個綠球和2個黑球,乙盒內(nèi)有大小相同的2個紅球、1個綠球和3個黑球,現(xiàn)從甲乙兩個盒子內(nèi)各任取2球.
(1)求取出的4個球中恰有1個紅球的概率;
(2)求取出的4個球中紅球個數(shù)不超過2個的概率;
(3)設取出的4個球中紅球的個數(shù)為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知a1=$\frac{1}{lo{g}_{9}3}$,數(shù)列{$\frac{1}{2}$an+3}是公比為$\frac{1}{2}$的等比數(shù)列,則a8=( 。
A.$\frac{191}{32}$B.-$\frac{191}{32}$C.$\frac{95}{16}$D.-$\frac{95}{16}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知每項均大于零的數(shù)列{an}中,首項a1=1且前n項和Sn滿足Sn$\sqrt{{S}_{n-1}}$-Sn-1$\sqrt{{S}_{n}}$=2$\sqrt{{S}_{n}{S}_{n-1}}$(n∈N*且n≥2),則a81=640.

查看答案和解析>>

同步練習冊答案