分析 先設(shè)β=α+$\frac{π}{6}$,根據(jù)sinβ求出cosβ,進(jìn)而求出sin2β和cos2β,最后用兩角和的正弦公式得到cos(2α+$\frac{π}{12}$)的值.
解答 解:設(shè)β=α+$\frac{π}{6}$,α為銳角,β=α+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{2π}{3}$),
∵sinβ=$\frac{3}{5}$<$\frac{\sqrt{3}}{2}$=sin$\frac{2π}{3}$,可得β為銳角,可求cosβ=$\frac{4}{5}$,sin2β=2sinβcosβ=$\frac{24}{25}$,cos2β=1-2sin2β=$\frac{7}{25}$,
∴cos(2α+$\frac{π}{12}$)=cos(2α+$\frac{π}{3}$-$\frac{π}{4}$)=cos(2β-$\frac{π}{4}$)=cos2βcos$\frac{π}{4}$+sin2βsin$\frac{π}{4}$=$\frac{31}{50}\sqrt{2}$.
故答案為:$\frac{31}{50}\sqrt{2}$.
點評 本題要我們在已知銳角α+$\frac{π}{6}$的余弦值的情況下,求2α+$\frac{π}{12}$的余弦函數(shù)值,著重考查了兩角和與差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函數(shù)中的恒等變換應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 輸出年份y∈[2000,2500)且y∈N“哪年是閏年”“哪年不是閏年” | |
B. | 輸出年份y∈[2000,2500]且y∈N“哪年是閏年”“哪年不是閏年” | |
C. | 輸出年份y∈[2000,2500)且y∈N“多少年是閏年”“多少年不是閏年” | |
D. | 輸出年份y∈[2000,2500]且y∈N“多少年是閏年”“多少年不是閏年” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k=-$\frac{4}{3}$,b=$\frac{1}{3}$ | B. | k=-$\frac{4}{3}$,b=-$\frac{1}{3}$ | C. | k=$\frac{4}{3}$,b=$\frac{1}{3}$ | D. | k=$\frac{4}{3}$,b=-$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com