分析 由0<α<$\frac{π}{2}$,可得sinα>0,cosα>0,運用同角的平方關系和二倍角的正弦公式,計算即可得到所求值.
解答 解:由0<α<$\frac{π}{2}$,可得sinα>0,cosα>0,
即有sinα+cosα=$\sqrt{(sinα+cosα)^{2}}$=$\sqrt{si{n}^{2}α+co{s}^{2}α+2sinαcosα}$
=$\sqrt{1+sin2α}$=$\sqrt{1+\frac{4}{5}}$=$\frac{3\sqrt{5}}{5}$.
故答案為:$\frac{3\sqrt{5}}{5}$.
點評 本題考查同角三角函數(shù)的基本關系式的運用,主要考查平方關系和二倍角的正弦公式,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,7),(5,2) | B. | (-1,7),(-5,2) | C. | (1,4),(5,2) | D. | (-1,4),(-5,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com