【題目】(1)某校夏令營有3名男同學(xué)A、B、C和3名女同學(xué)X、Y、Z,其年級(jí)情況如下表:
一年級(jí) | 二年級(jí) | 三年級(jí) | |
男同學(xué) | A | B | C |
女同學(xué) | X | Y | Z |
現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競賽(每人被選到的可能性相同).
①用表中字母列舉出所有可能的結(jié)果;
②設(shè)M為事件“選出的2人來自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué)”,求事件M發(fā)生的概率.
(2)節(jié)日前夕,小李在家門前的樹上掛了兩串彩燈.這兩串彩燈的第一次閃亮相互獨(dú)立,且都在通電后的4秒內(nèi)任一時(shí)刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮.那么這兩串彩燈同時(shí)通電后,它們第一次閃亮的時(shí)刻相差不超過2秒的概率是多少?
【答案】(1)①詳見解析②(2)
【解析】
(1)①用表中字母一一列舉出所有可能的結(jié)果,共15個(gè);
②用列舉法求出事件包含的結(jié)果有6個(gè),符合古典概型的特征,由此求得事件發(fā)生的概率;
(2)符合幾何概型的特征,設(shè)第一串彩燈亮的時(shí)刻為,第二串彩燈亮的時(shí)刻為,用不等式表示出條件,畫出圖象,根據(jù)面積之比求出概率.
解:(1)①從6名同學(xué)中隨機(jī)選出2人參加知識(shí)競賽的所有可能結(jié)果為,,,,,,,,,,,,,,,共15種;
②選出的2人來自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué)的所有可能結(jié)果為,,,,,,共6種,
因此,事件M發(fā)生的概率;
(2)設(shè)第一串彩燈亮的時(shí)刻為,第二串彩燈亮的時(shí)刻為,則,
要使兩串彩燈亮的時(shí)刻相差不超過2秒,則,
如圖,不等式組所表示的圖形面積為16,
不等式組所表示的六邊形的面積為,
由幾何概型的公式可得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟(jì)的飛速發(fā)展,人民生活水平得到很大提高,汽車已經(jīng)進(jìn)入千千萬萬的家庭.大部分的車主在購買汽車時(shí),會(huì)在轎車或者中作出選擇,為了研究某地區(qū)哪種車型更受歡迎以及汽車一年內(nèi)的行駛里程,某汽車銷售經(jīng)理作出如下統(tǒng)計(jì):
購買了轎車(輛) | 購買了(輛) | |
歲以下車主 | ||
歲以下車主 |
(1)根據(jù)表,是否有的把握認(rèn)為年齡與購買的汽車車型有關(guān)?
(2)圖給出的是名車主上一年汽車的行駛里程,求這名車主上一年汽車的平均行駛里程(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)用分層抽樣的方法從歲以上車主中抽取人,再從這人中隨機(jī)抽取人贈(zèng)送免費(fèi)保養(yǎng)券,求這人中至少有輛轎車的概率。
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】漢字聽寫大會(huì)不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”,弘揚(yáng)傳統(tǒng)文化,某市大約10萬名市民進(jìn)行了漢字聽寫測試現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個(gè)數(shù)全部在160到184之間,將測試結(jié)果按如下方式分成六組:第1組,第2組,,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第2組或第6組的概率;
試估計(jì)該市市民正確書寫漢字的個(gè)數(shù)的平均數(shù)與中位數(shù);
已知第4組市民中有3名男性,組織方要從第4組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABD﹣A1B1C1D1中四邊形A1B1C1D1,ADD1A1.ABB1A1均為正方形.點(diǎn)M是BD的中點(diǎn).點(diǎn)H在線段C1M上,且A1H與平面ABD所成角的正弦值為.
(Ⅰ)證明:B1D1∥平面BC1D:
(Ⅱ)求二面角A﹣A1H﹣B的的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)P是橢圓上一點(diǎn),M,N分別是兩圓(x+4)2+y2=1和(x-4)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)P是橢圓上一點(diǎn),M,N分別是兩圓(x+4)2+y2=1和(x-4)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三角形 的邊長為3, 分別是邊上的點(diǎn),滿足 (如圖1).將折起到的位置,使平面平面,連接(如圖2).
(1)求證:平面 ;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為.數(shù)列滿足,.
(1)若,且,求正整數(shù)的值;
(2)若數(shù)列,均是等差數(shù)列,求的取值范圍;
(3)若數(shù)列是等比數(shù)列,公比為,且,是否存在正整數(shù),使,,成等差數(shù)列,若存在,求出一個(gè)的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠對一批產(chǎn)品進(jìn)行了抽樣檢測.右圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是( ).
A. 90B. 75C. 60D. 45
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com