6.已知集合A={1,2,5},集合B={2,3,4},全集U={0,1,2,3,4,5},則∁UA∪B=( 。
A.{0,1,2,3,4}B.{0,2,3,4}C.{3,4}D.{0,3,4|

分析 直接利用交、并、補集的混合運算得答案.

解答 解:∵A={1,2,5},B={2,3,4},U={0,1,2,3,4,5},
∴∁UA={0,3,4},
則(∁UA)∪B={0,2,3,4}.
故選:B.

點評 本題考查交、并、補集的混合運算,是基礎(chǔ)的會考題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.關(guān)于x的方程x2-2x+lg(2a2-a)=0有一個正根和一個負(fù)根的充分不必要條件是( 。
A.-$\frac{1}{2}$<a<1B.-$\frac{1}{2}$<a<0C.0<a<1D.-$\frac{1}{2}$<a<0或$\frac{1}{2}$<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示為某一平面圖形的直觀圖,則此平面圖形可能是下圖中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點P(3,y)到左、右焦點的距離分別為$\frac{13}{2}$,$\frac{7}{2}$,則橢圓的方程為$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{\frac{75}{4}}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若集合A={x||x+1|<3}與B={x|x-x2>0},則集合∁AB等于( 。
A.(-2,0]∪(1,4)B.(-4,0]∪[1,2)C.(-∞,0]∪(1,+∞)D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\frac{3}{2}$π<α<2π,則sinα•cosα<0(填不等號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)已知二次函數(shù)y=x2-mx+(1-m)的圖象與x軸有兩個交點,求m的取值范圍;
(2)若關(guān)于x的不等式ax2+bx-2>0的解集是(-∞,-$\frac{1}{3}$)∪($\frac{1}{2}$,+∞),求ab.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.y=2sinωx與y=2cosωx(ω>0)的圖象的交點中,相鄰的兩個交點的距離為2$\sqrt{3}$,則ω=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=$\frac{{x}^{2}-x+3}{x}$的值域為( 。
A.(-∞,1-2$\sqrt{3}$)∪(2$\sqrt{3}$+1,+∞)B.[2$\sqrt{3}$-1,+∞)
C.(-∞,-1-2$\sqrt{3}$]∪[2$\sqrt{3}$-1,+∞)D.(-∞,-1-2$\sqrt{3}$]∪[2$\sqrt{3}$+1,+∞)

查看答案和解析>>

同步練習(xí)冊答案