11.已知等差數(shù)列{an}滿足a3•a7=-12,a4+a6=-4,求等差數(shù)列{an}的通項公式.

分析 由已知得a3,a7是一元二次方程x2+4x-12=0的兩個根,解方程x2+4x-12=0,得x1=-6,x2=2,從而得到a3=-6,a7=2或a3=2,a7=-6,由此能求出數(shù)列{an}的通項公式.

解答 解:∵等差數(shù)列{an}滿足a3•a7=-12,a4+a6=a3+a7=-4,
∴a3,a7是一元二次方程x2+4x-12=0,
解方程x2+4x-12=0,得x1=-6,x2=2,
當a3=-6,a7=2時,
$\left\{\begin{array}{l}{{a}_{1}+2d=-6}\\{{a}_{1}+6d=2}\end{array}\right.$,解得a1=-10,d=2,
an=-10+(n-1)×2=2n-12;
當a3=2,a7=-6時,
$\left\{\begin{array}{l}{{a}_{1}+2d=2}\\{{a}_{1}+6d=-6}\end{array}\right.$,解得a1=6,d=-2,
an=6+(n-1)×(-2)=-2n+8.

點評 本題考查等差數(shù)列的通項公式,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在平面直角坐標系中,$|\overrightarrow{OA}|=2|\overrightarrow{AB}|=2$,∠OAB=$\frac{2π}{3}$,$\overrightarrow{BC}=(-1,\sqrt{3})$,求點B,C的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若數(shù)列{an}是公比為q的等比數(shù)列,下列數(shù)列中不是等比數(shù)列的是( 。
A.{an•an+1}B.{nan}C.{${a}_{n}^{2}$}D.$\frac{{a}_{n}}{{a}_{n+1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x>0,y>0,且$\frac{1}{xy}$+$\frac{2}{x}$+$\frac{3}{y}$=2,則x+2y的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.數(shù)列{an}中,an=$\frac{1}{n+1}$-$\frac{1}{n}$,則a1+a2+a3+…a100=$-\frac{100}{101}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x+1)定義域是[2,3],求f(x2+2)定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=(2ax-x2)eax(a≥0)
(Ⅰ)若函數(shù)f(x)在區(qū)間$(\sqrt{2},2)$上單調(diào)遞減,求實數(shù)a的取值范圍.
(Ⅱ)若函數(shù)f(x)在區(qū)間$(\sqrt{2},2)$上存在單調(diào)遞減區(qū)間,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.汽車的最佳使用年限是使年均消耗費用最低的年限(年均消耗費用=年均成本費+年均維修費),設(shè)某種汽車的購車的總費用為50000元;使用中每年的保險費、養(yǎng)路費及汽油費合計為6000元;前x年的總維修費y滿足y=ax2+bx,已知第一年的維修費為1000元,前二年總維修費為3000元,這這種汽車的最佳使用年限為( 。
A.8B.9C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)={log_a}(ax)•{log_a}({a^2}x)$在x∈[2,8]時取得最大值2,最小值$-\frac{1}{4}$,求a.

查看答案和解析>>

同步練習(xí)冊答案