分析 (1)通過聯(lián)立a1+a1q=12、9$({a}_{1}{q}^{2})^{2}$=(a1q)•(a1q5),結(jié)合q>0可知q=3、a1=3,進(jìn)而可得結(jié)論;
(2)通過(1)可知log3an=n,利用等差數(shù)列的求和公式可知bn=$\frac{n(n+1)}{2}$,進(jìn)而裂項可知$\frac{1}{_{n}}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),并項相加即得結(jié)論.
解答 解:(1)依題意,a1+a1q=12,9$({a}_{1}{q}^{2})^{2}$=(a1q)•(a1q5),
整理得:a1+a1q=12,q2=9,
又∵等比數(shù)列{an}的各項均為正數(shù),
∴q=3,a1=3,
∴an=3n;
(2)由(1)可知log3an=log33n=n,
則bn=log3a1+log3a2+…log3an
=1+2+…+n
=$\frac{n(n+1)}{2}$,
∴$\frac{1}{_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
故所求值為2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=2(1-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$.
點評 本題考查數(shù)列的通項及前n項和,考查運算求解能力,考查裂項相消法,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分但不必要條件 | B. | 必要但不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com