7.定義運(yùn)算:x▽y=$\left\{\begin{array}{l}{x(xy≥0)}\\{y(xy<0)}\end{array}\right.$,例如:3▽4=3,(-2)▽4=4,則函數(shù)f(x)=x2▽(2x-x2)的最大值為(  )
A.0B.1C.2D.4

分析 由新定義可得f(x)=x2▽(2x-x2)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤2}\\{2x-{x}^{2},x>2或x<0}\end{array}\right.$,再由二次函數(shù)的最值的求法,即可得到所求最大值.

解答 解:由題意可得f(x)=x2▽(2x-x2
=$\left\{\begin{array}{l}{{x}^{2},0≤x≤2}\\{2x-{x}^{2},x>2或x<0}\end{array}\right.$,
當(dāng)0≤x≤2時(shí),f(x)∈[0,4];
當(dāng)x>2或x<0時(shí),f(x)∈(-∞,0).
綜上可得f(x)的最大值為4.
故選D.

點(diǎn)評(píng) 本題考查新定義的理解和運(yùn)用,考查二次函數(shù)的最值的求法,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列敘述中正確的是( 。
A.“m=2”是“l(fā)1:2x+(m+1)y+4=0與l2:mx+3y-2=0平行”的充分條件
B.“方程Ax2+By2=1表示橢圓”的充要條件是“A≠B”
C.命題“?x∈R,x2≥0”的否定是“?x0∈R,x02≥0”
D.命題“a、b都是偶數(shù),則a+b是偶數(shù)”的逆否命題為“a+b不是偶數(shù),則a、b都是奇數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在下列關(guān)于函數(shù)f(x)=$\frac{1}{2}$cosx+$\frac{1}{2}$|cosx|說法中,正確的是(  )
A.最小正周期為πB.值域?yàn)閇0,1]
C.在[$\frac{π}{2}$,$\frac{3π}{2}$]上單調(diào)遞減D.(π,0)是其圖象的一個(gè)對(duì)稱中心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=x|x|-mx+1有三個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.(0,2)B.(2,+∞)C.(-∞,-2)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知z1=m+i,z2=1-2i,若$\frac{{z}_{1}}{{z}_{2}}$為實(shí)數(shù),則實(shí)數(shù)m的值為( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列有關(guān)命題的說法錯(cuò)誤的個(gè)數(shù)是( 。
①命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
②“x=-1”是“x2-5x-6=0”的充分不必要條件
③命題“存在x∈R,使得x2+x-1<0”的否定是:“任意x∈R,均有x2+x-1>0”
④命題“若x=y,則sin x=sin y”的逆否命題為真命題
⑤若“p或q”為真命題,則p、q均為真命題.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求符合下列條件的直線方程.
(1)過點(diǎn)P(3,-2),且與直線4x+y-2=0平行;
(2)過點(diǎn)P(3,-2),且在兩軸上的截距互為相反數(shù).
(3)過點(diǎn)P(3,-2),且與兩坐標(biāo)軸圍成的三角形面積為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某市某小學(xué)學(xué)生的體重平均值知下表:
身高/cm60708090100110
體重/kg6.137.909.9912.1515.0217.50
身高/cm120130140150160170
體重/kg20.0226.8631.1138.8547.2555.05
(1)根據(jù)該表提供的數(shù)據(jù),能否建立恰當(dāng)?shù)暮瘮?shù)模型,使它能比較近似地反映這個(gè)學(xué)校學(xué)生體重y(kg)與身高x(cm)的函數(shù)關(guān)系?結(jié)合以下所供參考數(shù)據(jù),選擇適當(dāng)兩組數(shù)據(jù),試寫出這個(gè)函數(shù)模型的解析式.(供選擇的函數(shù)模型:①y=ax${\;}^{\frac{1}{2}}$+b,②y=a•b2,③y=,a(lgx)+b).
(2)若體重超過相同身高體重平均值的1.2倍為偏胖,低于0.8倍為偏瘦,那么該校某一學(xué)生的身高為175cm,體重為78kg,他的體重是否正常?
供參考數(shù)據(jù):5.98$\frac{1}{90}$≈1.02,8.98${\;}^{\frac{1}{110}}$≈1.02,1.0260≈3.28,1.0270≈4.00,1.02160≈23.77,1.02170≈28.98,1.02175≈31.99.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知(a2+2a+3)x>(a2+2a+3)1-x,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案