15.已知集合A={x∈R|x<$\frac{π}{2}$},B={1,2,3,4},則(∁RA)∩B={2,3,4}.

分析 先求出(∁UA),再根據(jù)交集的運(yùn)算法則計(jì)算即可

解答 解:∵集合A={x∈R|x<$\frac{π}{2}$},
∴(∁UA)={x∈R|x≥$\frac{π}{2}$},
∵B={1,2,3,4},
∴(∁UA)∩B={2,3,4}
故答案為:{2,3,4}.

點(diǎn)評(píng) 本題考查集合的交并補(bǔ)運(yùn)算,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若直線(xiàn)x-y-m=0被圓x2+y2-8x+12=0所截得的弦長(zhǎng)為$2\sqrt{2}$,則實(shí)數(shù)m的值為( 。
A.2或6B.0或8C.2或0D.6或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(Ⅰ)計(jì)算:($\frac{4}{3}$)-1+($\frac{1}{8}$)${\;}^{\frac{2}{3}}$+lg3-lg0.3
(Ⅱ)已知tanα=2,求$\frac{sinα-sin(\frac{π}{2}-α)}{sin(π-α)+2cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若角α的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與x軸的非負(fù)半軸重合,且終邊上一點(diǎn)的坐標(biāo)為(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),則tanα的值為(  )
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.函數(shù)f(x)=2$\sqrt{3}$sin(ωx+$\frac{π}{3}$)(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B,C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(Ⅰ)指出函數(shù)f(x)的值域;
(Ⅱ)求函數(shù)f(x)的解析式;
(Ⅲ)若f(x0)=$\frac{8\sqrt{3}}{5}$,且x0∈(-$\frac{10}{3}$,$\frac{2}{3}$),求f(x0+6)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,直四棱柱ABCD-A1B1C1D1的底面是等腰梯形,AB=CD=AD=1,BC=2,E,M,N分別是所在棱的中點(diǎn).
(1)證明:平面MNE⊥平面D1DE;
(2)證明:MN∥平面D1DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知a>0,b∈R,函數(shù)f(x)=4ax2-2bx-a+b的定義域?yàn)閇0,1].
(Ⅰ)當(dāng)a=1時(shí),函數(shù)f(x)在定義域內(nèi)有兩個(gè)不同的零點(diǎn),求b的取值范圍;
(Ⅱ)記f(x)的最大值為M,證明:f(x)+M>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知向量$\overrightarrow a=(2cosx,2)$,$\overrightarrow b=(cosx,\frac{1}{2})$,記函數(shù)$f(x)=\overrightarrow a•\overrightarrow b+\sqrt{3}sin2x$
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)求函數(shù)f(x)的最值以及取得最值時(shí)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.從集合{1,2,3,4,5,6}中隨機(jī)抽取一個(gè)數(shù)a,從集合{1,2,3}中隨機(jī)收取一個(gè)數(shù)b,則loga2b=1的概率為( 。
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案