分析 (1)把a(bǔ)=1代入不等式化簡(jiǎn)集合A,然后由補(bǔ)集運(yùn)算求得∁AB;
(2)分類(lèi)求解集合A,由A∩B=A,得A⊆B,再由兩集合端點(diǎn)值間的關(guān)系列式求得實(shí)數(shù)a的取值范圍.
解答 解:(1)當(dāng)a=1時(shí),A={x|0<x+1≤3}={x|-1<x≤2},
又B={x|-$\frac{1}{2}<$x<2},
∴∁AB={x|-1$<x≤-\frac{1}{2}$}∪{2};
(2)A={x|0<ax+1≤3},
若a=0,則A=R,不合題意;
若a<0,則A={x|0<ax+1≤3}={x|$\frac{2}{a}≤x<-\frac{1}{a}$},B={x|-$\frac{1}{2}<$x<2},
由A∩B=A,得A⊆B,則$\left\{\begin{array}{l}{\frac{2}{a}>-\frac{1}{2}}\\{-\frac{1}{a}≤2}\end{array}\right.$,解得a<-4;
若a>0,則A={x|0<ax+1≤3}={x|$-\frac{1}{a}<x≤\frac{2}{a}$},B={x|-$\frac{1}{2}<$x<2},
由A∩B=A,得A⊆B,則$\left\{\begin{array}{l}{-\frac{1}{a}≥-\frac{1}{2}}\\{\frac{2}{a}<2}\end{array}\right.$,解得a≥2.
綜上,實(shí)數(shù)a的取值范圍是(-∞,-4)∪[2,+∞).
點(diǎn)評(píng) 本題考查交集、并集、補(bǔ)集的混合運(yùn)算,考查了分類(lèi)討論的數(shù)學(xué)思想方法,考查數(shù)學(xué)轉(zhuǎn)化思想方法,明確兩集合端點(diǎn)值間的關(guān)系是解答該題的關(guān)鍵,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k<9 | B. | 9<k<16 | C. | 16<k<25 | D. | k>25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{2\sqrt{6}}{5}$ | D. | -$\frac{2\sqrt{6}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com