2.設集合A={(x,y)|x+y=1},B={(x,y)|2x-y=-4},則A∩B=(  )
A.{x=-1,y=2}B.(-1,2)C.{-1,2}D.{(-1,2)}

分析 利用交集的定義和二元一次方程組的性質(zhì)求解.

解答 解:∵集合A={(x,y)|x+y=1},B={(x,y)|2x-y=-4},
∴A∩B={(x,y)|$\left\{\begin{array}{l}{x+y=1}\\{2x-y=-4}\end{array}\right.$}=(-1,2).
故選:B.

點評 本題考查交集的求法,是基礎題,解題時要認真審題,注意交集的定義和二元一次方程組的性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.正方體ABCD-A1B1C1D1中,E是棱BB1中點,G是DD1中點,F(xiàn)是BC上一點且FB=$\frac{1}{4}$BC,則GB與EF所成的角為( 。
A.30°B.120°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知a,b均為正數(shù),$\frac{1}{a}+\frac{4}=1$,求使a+b≥c恒成立的c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.(-5)-2=$\frac{1}{25}$;${log_{\frac{1}{3}}}\sqrt{3}$=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖,在正方體ABCD-A1B1C1D1中,直線BD1與B1C所成角的大小是( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,長軸為8,P是橢圓上的一點,PF2⊥F1F2,PF2=$\frac{1}{3}$PF1
(1)求橢圓方程;
(2)過橢圓左準線l上任意一點A引圓Q:x2+(y-$\frac{^{2}}{2a}$)2=$\frac{9}{16}$a2的兩條切線,切點分別為M,N.試探究直線MN是否過定點?若過定點,請求出該定點;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{2}$+y2=1的兩焦點為F1,F(xiàn)2,設點P(x0,y0)滿足0<$\frac{{{x}_{0}}^{2}}{2}$+y02<1.
(1)求|PF1|+|PF2|的取值范圍;
(2)試判斷直線$\frac{{x}_{0}}{2}$x+y0y=1與橢圓C有幾個交點,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設數(shù)列{an}的通項公式為${a_n}={(\frac{3}{2})^{n-1}}$,則滿足不等式$\sum_{i=1}^n{\frac{3}{a_i}}>\sum_{i=1}^n{a_i}$的正整數(shù)n的集合為{1,2,3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知f(x)是二次函數(shù),若f(x)的最小值為2,且f(0)=f(2)=3.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)在區(qū)間[t,t+1](t∈R)的最小值.

查看答案和解析>>

同步練習冊答案