13.已知a,b均為正數(shù),$\frac{1}{a}+\frac{4}=1$,求使a+b≥c恒成立的c的取值范圍.

分析 先用“貼1法”求得a+b的最小值,即a+b=(a+b)•1=(a+b)•($\frac{1}{a}$+$\frac{4}$),展開再用基本不等式求最值即可.

解答 解:因?yàn)閍,b均為正數(shù),且$\frac{1}{a}+\frac{4}=1$,所以,
a+b=(a+b)•1=(a+b)•($\frac{1}{a}$+$\frac{4}$)
=5+$\frac{a}$+$\frac{4a}$≥5+2$\sqrt{\frac{a}•\frac{4a}}$=9,
即a+b≥9,
根據(jù)題意,c≤(a+b)min,∴c≤9.
故實(shí)數(shù)c的取值范圍為:(-∞,9].

點(diǎn)評 本題主要考查了基本不等式在求最值中的應(yīng)用,其中靈活運(yùn)用“貼1法”是解決本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知α∈(0,π),且tan($α+\frac{π}{4}$)=$\frac{1}{7}$,則cosα=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.直線l過點(diǎn)(3,-1),且與向量$\overrightarrow n=(2,-3)$垂直,直線l的點(diǎn)法向式方程為2(x-3)-3(y+1)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)滿足f(x)=f(π-x),且當(dāng)$x∈(-\frac{π}{2},\frac{π}{2})$時,f(x)=x+sinx,設(shè)a=f(1),b=f(2),c=f(3),則a、b、c的大小關(guān)系是b>a>c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若一個底面是正三角形的三棱柱的正視圖如圖所示,其頂點(diǎn)都在一個球面上,則該球的表面積為( 。 
A.$\frac{16}{3}$ πB.$\frac{19}{3}$ πC.$\frac{19}{12}$ πD.$\frac{4}{3}$ π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.定義:對于函數(shù)f(x),若存在非零常數(shù)M,T,使函數(shù)f(x)對于定義域內(nèi)的任意實(shí)數(shù)x,都有f(x+T)-f(x)=M,則稱函數(shù)f(x)是廣義周期函數(shù),其中稱T為函數(shù)f(x)的廣義周期,M稱為周距.
(1)證明函數(shù)f(x)=x+(-1)x(x∈Z)是以2為廣義周期的廣義周期函數(shù),并求出它的相應(yīng)周距M的值;
(2)設(shè)函數(shù)y=g(x)是周期T=2的周期函數(shù)(即滿足g(x+2)=g(x)),當(dāng)函數(shù)f(x)=-2x+g(x)在[1,3]上的值域?yàn)閇-3,3]時,求f(x)在[-9,9]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)$f(x)=\frac{1}{x}ln(\sqrt{6-x-{x^2}}+\sqrt{{x^2}-2x})$的定義域?yàn)椋ā 。?table class="qanwser">A.[-3,0]B.[-3,0)C.[-3,0)∪{2}D.[-3,0]∪{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合A={(x,y)|x+y=1},B={(x,y)|2x-y=-4},則A∩B=( 。
A.{x=-1,y=2}B.(-1,2)C.{-1,2}D.{(-1,2)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知甲圓錐的半徑是乙圓錐半徑的3倍,它的高只有乙圓錐高的$\frac{1}{3}$,則甲圓錐與乙圓錐的體積之比為(  )
A.1:1B.3:1C.9:1D.1:9

查看答案和解析>>

同步練習(xí)冊答案