3.已知tanα=$\frac{1}{3}$,則$\frac{sinα-co{s}^{3}α}{sinα+cosα}$=( 。
A.-$\frac{17}{40}$B.-$\frac{5}{16}$C.-$\frac{34}{45}$D.-$\frac{1}{2}$

分析 由同角三角函數(shù)基本關(guān)系,弦化切代值計算可得.

解答 解:∵tanα=$\frac{1}{3}$,∴cos2α=$\frac{9}{10}$,
∴$\frac{sinα-co{s}^{3}α}{sinα+cosα}$=$\frac{sinα-\frac{9}{10}cosα}{sinα+cosα}$
=$\frac{tanα-\frac{9}{10}}{tanα+1}$$\frac{\frac{1}{3}-\frac{9}{10}}{\frac{1}{3}+1}$=-$\frac{17}{40}$
故選:A

點評 本題考查三角函數(shù)化簡,涉及弦化切的方法,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(2,-1),且$\overrightarrow{a}$+k$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$平行,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某日,甲乙二人隨機(jī)選擇早上6:00-7:00的某一時刻到達(dá)黔靈山公園早鍛煉,則甲比乙提前到達(dá)超過20分鐘的概率為(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{7}{9}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)已知sinx-cosx=$\frac{1}{5}$,求sinxcosx的值;
(2)a為實數(shù),求函數(shù)f(x)=sinxcosx+a(sinx-cosx),x∈[$\frac{π}{2}$,π]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知集合A={1,2,5},B={a+4,a},若A∩B=B,則實數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線系M:(x-3)cosθ+ysinθ=1(0≤θ≤2π),則下列命題正確的是②③⑤⑥
①M(fèi)中所有直線均過一個定點
②存在定點P不在M中任意一條直線上
③對于任意正整數(shù)n(n≥3),存在正n邊形其所有邊均在M中直線上
④M中的直線所圍成的正三角形面積都相等
⑤存在一個圓與所用直線不相交
⑥存在一個圓與所有直線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若點(1,1)和點(0,2)一個在圓(x-a)2+(y+a)2=4的內(nèi)部,另一個在圓的外面,則正實數(shù)a的取值范圍是( 。
A.(1,+∞)B.(0,$\frac{1}{2}$)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)數(shù)列{an}滿足${a_1}=1,{a_{n+1}}=2{a_n}+1,({n∈{N^*}})$,則{an}的通項公式是(  )
A.2n-1B.2nC.2n+1D.2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,cos2A+cos2C=2cos2B,求證:$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{2}{tanB}$.

查看答案和解析>>

同步練習(xí)冊答案